metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1081-m1082

{4,4′-Dimeth­­oxy-2,2′-[1,1′-(ethane-1,2-diyldi­nitrilo)di­ethyl­­idyne]diphenolato}nickel(II) hemihydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 14 July 2008; accepted 24 July 2008; online 31 July 2008)

In the title complex, [Ni(C20H22N2O4)]·0.5H2O, the NiII ion is in a slightly distorted square-planar geometry involving an N2O2 atom set of the tetra­dentate Schiff base ligand. The asymmetric unit contains one mol­ecule of the complex and half a water solvent mol­ecule. The solvent water mol­ecule lies on a crystallographic twofold rotation axis. An inter­molecular O—H⋯O hydrogen bond forms an R21(4) ring motif involving a bifurcated hydrogen bond to the phenolate O atoms of the complex. In the crystal structure, mol­ecules are linked by ππ stacking inter­actions, with centroid–centroid distances in the range 3.5310 (11)–3.7905 (12) Å, forming extended chains along the b axis. In addition, there are Ni⋯Ni and Ni⋯N inter­actions [3.4404 (4)–4.1588 (4) and 3.383 (2)–3.756 (2) Å, respectively] which are shorter than the sum of the van der Waals radii of the relevant atoms. Further stabilization of the crystal structure is attained by weak inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures see, for example: Clark et al. (1968[Clark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, pp. 223-226.], 1969[Clark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, pp. 823-829.], 1970[Clark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, pp. 396-399.]); Hodgson (1975[Hodgson, D. J. (1975). Prog. Inorg. Chem. 19, 173-202.]). For applications and bioactivities see, for example: Elmali et al. (2000[Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423-424.]); Blower (1998[Blower, P. J. (1998). Transition Met. Chem. 23, 109-112.]); Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Li & Chang (1991[Li, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35-39.]); Shahrokhian et al. (2000[Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956-962.]); Fun & Kia (2008[Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64. In the press. [AT2603].]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C20H22N2O4)]·0.5H2O

  • Mr = 422.11

  • Monoclinic, C 2/c

  • a = 29.1721 (7) Å

  • b = 7.3032 (2) Å

  • c = 17.2833 (4) Å

  • β = 101.323 (1)°

  • V = 3610.53 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 100.0 (1) K

  • 0.33 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.712, Tmax = 0.853

  • 21087 measured reflections

  • 5319 independent reflections

  • 4166 reflections with I > 2˘I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.138

  • S = 1.04

  • 5319 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O2 1.8201 (16)
Ni1—O1 1.8315 (15)
Ni1—N1 1.8575 (19)
Ni1—N2 1.8617 (19)
Ni1⋯Ni1i 3.4404 (4)
Ni1⋯Ni1ii 4.1588 (4)
Ni1⋯N1i 3.383 (2)
Ni1⋯N2i 3.756 (2)
Ni1⋯N2ii 3.728 (2)
Cg1⋯Cg3iii 3.7905 (12)
Cg3⋯Cg4iv 3.5310 (11)
Cg4⋯Cg4iii 3.6152 (11)
O2—Ni1—O1 81.89 (7)
O2—Ni1—N1 175.30 (8)
O1—Ni1—N1 94.47 (8)
O2—Ni1—N2 93.96 (8)
O1—Ni1—N2 175.13 (8)
N1—Ni1—N2 89.81 (8)
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+2, -z; (iii) [x+{\script{1\over 2}}, y+{\script{5\over 2}}, z]; (iv) [x+{\script{1\over 2}}, y+{\script{3\over 2}}, z]. Cg1, Cg3, and Cg4 are the centroids of the C11–C16, Ni1-O1-C1-C6-C7-N1 and Ni1-O2-C16-C11-C10-N2 rings, respectively.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O1 0.84 2.41 3.1173 (19) 143
O1W—H1W1⋯O2 0.84 2.21 2.9077 (16) 141
C8—H8A⋯O2i 0.97 2.47 3.319 (3) 146
C9—H9A⋯O1Wii 0.97 2.52 3.407 (3) 152
C18—H18BCg1iv 0.96 2.71 3.385 (2) 127
C19—H19CCg2iv 0.96 2.81 3.652 (3) 146
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y+2, -z; (iv) [x+{\script{1\over 2}}, y+{\script{3\over 2}}, z]. Cg1 and Cg2 are centroids of the C11–C16 and C1–C6 benzene rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff base complexes are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993). Transition metal complexes of Schiff base ligands are always of interest since they exhibit a marked tendency to oligomerize, thus leading to novel structural types, and also display a wide variety of magnetic properties. Many of the reported structural investigations of these complexes are discussed in some details in a review (Hodgson, 1975). Metal derivatives of Schiff bases have been studied extensively, and Cu(II) and Ni(II) complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Blower, 1993; Fun & Kia, 2008; Granovski et al., 1993; Li & Chang, 1991; Shahrokhian et al., 2000). Tetradentate Schiff base metal complexes may form trans or cis planar or tetrahedral structures (Elmali et al., 2000).

In the title compound (I, Fig. 1), the NiII ion shows a sligthly distorted square-planar geometry which is coordinated by two imine N atoms and two phenol O atoms of the tetradentate Schiff base ligand. An intermolecular O—H···O hydrogen bond forms a four-membered ring, producing a R12(4) ring motif (Bernstein et al., 1995). The bond lengths are within the normal ranges (Allen et al., 1987). The asymmetric unit of the compound contains one molecule of the complex, and one-half of the water solvent. The latter shows bifurcated hydrogen bond which is connected to the phenolato oxygen atoms of the complex. Atoms C8 and C9 are significantly out of the plane, as indicated by the torsion angle N1–C8–C9–N2, which is -23.6 (3)°. The dihedral angle betwen two benzene rings is 5.13 (11)°. In the crystal structure, (Fig. 2), the molecules are form 1-D extended chains along the b axis with Ni···Ni and Ni···N separations (Table 2) of 3.4404 (4) – 4.1588 (4), and 3.383 (2) – 3.756 (2) Å, and short intermolecular distances between the centroids of the six-membered rings [3.5310 (11) – 3.7905 (12) Å], respectively. The Ni···Ni dimeric separations are significantly shorter than the sum of the van der Waals radii of two Ni atoms (4.60 Å). The crystal packing is stabilized by intermolecular O—H···O (x 2), and C—H···O (x 2) hydrogen bonds, and weak intermolecular C—H···π interactions.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures see, for example: Clark et al. (1968, 1969, 1970); Hodgson, 1975. For applications and bioactivities see, for example: Elmali et al. (2000); Blower (1998); Granovski et al., (1993); Li & Chang, (1991); Shahrokhian et al. (2000); Fun & Kia, (2008).

Experimental top

A chloroform solution (40 ml) of the ligand (1 mmol, 354 mg) was added to a methanol solution (20 ml) of NiCl2.6H2O (1.05 mmol, 237 mg). The mixture was refluxed for 30 min and then filtered. After keeping the filtrate in air for 4 d, red block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement top

The water H-atoms are located from the difference Fourier map and refined as riding with the parent atom with an isotropic thermal parameter 1.5 times that of the parent atom. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.93–97 Å] and refined using a riding model. A rotating-group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intermolecular hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), viewd down the b axis, showing stacking of molecules along the b axis. Intramolecular and intermolecular interactions are drawn as dashed lines.
{4,4'-Dimethoxy-2,2'-[1,1'-(ethane-1,2-diyldinitrilo)diethylidyne]diphenolato}nickel(II) hemihydrate top
Crystal data top
[Ni(C20H22N2O4)]·0.5H2OF(000) = 1776
Mr = 422.11Dx = 1.557 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6474 reflections
a = 29.1721 (7) Åθ = 2.4–28.5°
b = 7.3032 (2) ŵ = 1.11 mm1
c = 17.2833 (4) ÅT = 100 K
β = 101.323 (1)°Block, red
V = 3610.53 (16) Å30.33 × 0.18 × 0.15 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5319 independent reflections
Radiation source: fine-focus sealed tube4166 reflections with I > 2˘I)
Graphite monochromatorRint = 0.042
ϕ and ω scansθmax = 30.2°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3541
Tmin = 0.712, Tmax = 0.853k = 108
21087 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0817P)2 + 1.6212P]
where P = (Fo2 + 2Fc2)/3
5319 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Ni(C20H22N2O4)]·0.5H2OV = 3610.53 (16) Å3
Mr = 422.11Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.1721 (7) ŵ = 1.11 mm1
b = 7.3032 (2) ÅT = 100 K
c = 17.2833 (4) Å0.33 × 0.18 × 0.15 mm
β = 101.323 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5319 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4166 reflections with I > 2˘I)
Tmin = 0.712, Tmax = 0.853Rint = 0.042
21087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.04Δρmax = 1.43 e Å3
5319 reflectionsΔρmin = 0.90 e Å3
253 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.013248 (10)0.72441 (4)0.025207 (15)0.01283 (11)
O10.04524 (6)0.6694 (2)0.12462 (9)0.0166 (3)
O20.02834 (6)0.8182 (2)0.08056 (9)0.0163 (3)
O30.22776 (6)0.4706 (3)0.23839 (11)0.0386 (6)
O40.20747 (6)1.0823 (3)0.00397 (10)0.0263 (4)
N10.05957 (7)0.6362 (3)0.02489 (11)0.0148 (4)
N20.02394 (7)0.7776 (3)0.07261 (11)0.0138 (4)
C10.08918 (8)0.6183 (3)0.14511 (13)0.0146 (4)
C20.10797 (8)0.6091 (3)0.22710 (13)0.0174 (5)
H2A0.08890.63720.26270.021*
C30.15355 (9)0.5599 (4)0.25526 (14)0.0229 (5)
H3A0.16510.55540.30940.027*
C40.18251 (9)0.5167 (4)0.20272 (14)0.0221 (5)
C50.16555 (8)0.5227 (3)0.12301 (13)0.0184 (5)
H5A0.18520.49280.08850.022*
C60.11850 (8)0.5736 (3)0.09201 (13)0.0148 (4)
C70.10115 (8)0.5758 (3)0.00639 (13)0.0148 (5)
C80.04336 (8)0.6242 (3)0.11176 (12)0.0155 (5)
H8A0.03550.49820.12660.019*
H8B0.06830.66250.13790.019*
C90.00088 (9)0.7449 (3)0.13816 (13)0.0167 (5)
H9A0.01060.86110.15680.020*
H9B0.02020.68660.18160.020*
C100.06551 (8)0.8514 (3)0.08899 (13)0.0147 (4)
C110.09141 (8)0.8976 (3)0.02736 (13)0.0150 (4)
C120.13832 (8)0.9617 (3)0.04730 (13)0.0165 (5)
H12A0.15310.96770.10010.020*
C130.16223 (8)1.0148 (3)0.00996 (14)0.0182 (5)
C140.14041 (8)1.0085 (3)0.08966 (13)0.0184 (5)
H14A0.15621.04880.12830.022*
C150.09594 (8)0.9432 (3)0.11049 (13)0.0161 (5)
H15A0.08190.93780.16360.019*
C160.07050 (8)0.8834 (3)0.05342 (13)0.0152 (5)
C170.26105 (9)0.4494 (4)0.19015 (16)0.0292 (6)
H17A0.29060.41590.22210.044*
H17B0.26430.56260.16360.044*
H17C0.25100.35520.15190.044*
C180.13369 (9)0.5047 (3)0.04465 (14)0.0185 (5)
H18A0.11600.47530.09610.028*
H18B0.14930.39680.02100.028*
H18C0.15650.59680.04930.028*
C190.08767 (8)0.8943 (3)0.17351 (13)0.0187 (5)
H19A0.06380.92890.20190.028*
H19B0.10950.99320.17470.028*
H19C0.10380.78790.19770.028*
C200.23260 (9)1.0747 (4)0.08316 (15)0.0263 (6)
H20A0.26351.12320.08580.039*
H20B0.23470.94980.10090.039*
H20C0.21661.14590.11630.039*
O1W0.00000.8705 (3)0.25000.0218 (5)
H1W10.00170.80660.20940.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01457 (17)0.01553 (18)0.00876 (15)0.00044 (11)0.00319 (11)0.00026 (10)
O10.0164 (8)0.0229 (9)0.0106 (7)0.0030 (7)0.0031 (6)0.0001 (6)
O20.0169 (8)0.0207 (9)0.0114 (7)0.0043 (7)0.0026 (6)0.0012 (6)
O30.0139 (9)0.0829 (18)0.0188 (9)0.0118 (10)0.0030 (8)0.0066 (10)
O40.0159 (9)0.0410 (12)0.0216 (9)0.0080 (8)0.0026 (7)0.0027 (8)
N10.0197 (10)0.0146 (10)0.0110 (8)0.0028 (8)0.0055 (7)0.0004 (7)
N20.0176 (10)0.0149 (9)0.0095 (8)0.0008 (8)0.0042 (7)0.0002 (7)
C10.0161 (11)0.0139 (11)0.0139 (10)0.0014 (9)0.0029 (8)0.0002 (8)
C20.0187 (12)0.0222 (12)0.0124 (10)0.0009 (9)0.0058 (9)0.0007 (9)
C30.0200 (13)0.0356 (15)0.0121 (11)0.0034 (11)0.0007 (9)0.0027 (10)
C40.0146 (12)0.0341 (15)0.0173 (11)0.0013 (11)0.0022 (9)0.0037 (10)
C50.0155 (12)0.0249 (13)0.0155 (11)0.0008 (10)0.0050 (9)0.0003 (9)
C60.0158 (11)0.0154 (11)0.0134 (10)0.0018 (9)0.0034 (8)0.0002 (8)
C70.0184 (12)0.0136 (11)0.0135 (10)0.0024 (9)0.0055 (9)0.0005 (8)
C80.0182 (11)0.0178 (11)0.0116 (10)0.0007 (9)0.0056 (8)0.0010 (8)
C90.0187 (12)0.0212 (12)0.0111 (10)0.0013 (9)0.0050 (9)0.0002 (8)
C100.0170 (11)0.0141 (11)0.0124 (10)0.0022 (9)0.0012 (8)0.0009 (8)
C110.0184 (12)0.0128 (11)0.0141 (10)0.0017 (9)0.0042 (9)0.0004 (8)
C120.0165 (12)0.0169 (12)0.0145 (10)0.0004 (9)0.0009 (9)0.0026 (8)
C130.0150 (11)0.0212 (12)0.0178 (11)0.0033 (9)0.0023 (9)0.0011 (9)
C140.0193 (12)0.0219 (13)0.0154 (11)0.0016 (10)0.0073 (9)0.0011 (9)
C150.0186 (12)0.0171 (11)0.0126 (10)0.0002 (9)0.0032 (9)0.0003 (8)
C160.0171 (11)0.0125 (11)0.0163 (10)0.0001 (9)0.0039 (9)0.0001 (8)
C170.0186 (13)0.0424 (17)0.0284 (14)0.0081 (12)0.0089 (11)0.0058 (12)
C180.0191 (12)0.0210 (12)0.0165 (11)0.0026 (10)0.0064 (9)0.0015 (9)
C190.0214 (12)0.0215 (12)0.0124 (10)0.0021 (10)0.0014 (9)0.0013 (9)
C200.0183 (13)0.0335 (15)0.0246 (13)0.0054 (11)0.0019 (10)0.0003 (11)
O1W0.0307 (14)0.0245 (14)0.0100 (10)0.0000.0039 (10)0.000
Geometric parameters (Å, º) top
Ni1—O21.8201 (16)C8—H8B0.9700
Ni1—O11.8315 (15)C9—H9A0.9700
Ni1—N11.8575 (19)C9—H9B0.9700
Ni1—N21.8617 (19)C10—C111.461 (3)
O1—C11.315 (3)C10—C191.510 (3)
O2—C161.316 (3)C11—C161.413 (3)
O3—C41.384 (3)C11—C121.423 (3)
O3—C171.407 (3)C12—C131.374 (3)
O4—C131.385 (3)C12—H12A0.9300
O4—C201.421 (3)C13—C141.400 (3)
N1—C71.304 (3)C14—C151.363 (3)
N1—C81.486 (3)C14—H14A0.9300
N2—C101.307 (3)C15—C161.415 (3)
N2—C91.479 (3)C15—H15A0.9300
C1—C61.410 (3)C17—H17A0.9600
C1—C21.417 (3)C17—H17B0.9600
C2—C31.371 (3)C17—H17C0.9600
C2—H2A0.9300C18—H18A0.9600
C3—C41.392 (3)C18—H18B0.9600
C3—H3A0.9300C18—H18C0.9600
C4—C51.370 (3)C19—H19A0.9600
C5—C61.422 (3)C19—H19B0.9600
C5—H5A0.9300C19—H19C0.9600
C6—C71.467 (3)C20—H20A0.9600
C7—C181.509 (3)C20—H20B0.9600
C8—C91.516 (3)C20—H20C0.9600
C8—H8A0.9700O1W—H1W10.8359
Ni1···Ni1i3.4404 (4)Ni1···N2ii3.728 (2)
Ni1···Ni1ii4.1588 (4)Cg1···Cg3iii3.7905 (12)
Ni1···N1i3.383 (2)Cg3···Cg4iv3.5310 (11)
Ni1···N2i3.756 (2)Cg4···Cg4iii3.6152 (11)
O2—Ni1—O181.89 (7)C8—C9—H9B109.4
O2—Ni1—N1175.30 (8)H9A—C9—H9B108.0
O1—Ni1—N194.47 (8)N2—C10—C11121.9 (2)
O2—Ni1—N293.96 (8)N2—C10—C19119.9 (2)
O1—Ni1—N2175.13 (8)C11—C10—C19118.2 (2)
N1—Ni1—N289.81 (8)C16—C11—C12118.1 (2)
C1—O1—Ni1127.23 (14)C16—C11—C10121.2 (2)
C16—O2—Ni1128.42 (14)C12—C11—C10120.6 (2)
C4—O3—C17118.2 (2)C13—C12—C11121.2 (2)
C13—O4—C20116.57 (19)C13—C12—H12A119.4
C7—N1—C8118.98 (19)C11—C12—H12A119.4
C7—N1—Ni1128.81 (16)C12—C13—O4125.2 (2)
C8—N1—Ni1112.03 (14)C12—C13—C14120.2 (2)
C10—N2—C9118.29 (19)O4—C13—C14114.6 (2)
C10—N2—Ni1129.30 (16)C15—C14—C13119.8 (2)
C9—N2—Ni1112.11 (15)C15—C14—H14A120.1
O1—C1—C6125.0 (2)C13—C14—H14A120.1
O1—C1—C2116.6 (2)C14—C15—C16121.8 (2)
C6—C1—C2118.4 (2)C14—C15—H15A119.1
C3—C2—C1121.7 (2)C16—C15—H15A119.1
C3—C2—H2A119.2O2—C16—C11124.8 (2)
C1—C2—H2A119.2O2—C16—C15116.4 (2)
C2—C3—C4119.9 (2)C11—C16—C15118.8 (2)
C2—C3—H3A120.1O3—C17—H17A109.5
C4—C3—H3A120.1O3—C17—H17B109.5
C5—C4—O3125.5 (2)H17A—C17—H17B109.5
C5—C4—C3120.2 (2)O3—C17—H17C109.5
O3—C4—C3114.4 (2)H17A—C17—H17C109.5
C4—C5—C6121.2 (2)H17B—C17—H17C109.5
C4—C5—H5A119.4C7—C18—H18A109.5
C6—C5—H5A119.4C7—C18—H18B109.5
C1—C6—C5118.6 (2)H18A—C18—H18B109.5
C1—C6—C7121.4 (2)C7—C18—H18C109.5
C5—C6—C7119.9 (2)H18A—C18—H18C109.5
N1—C7—C6122.0 (2)H18B—C18—H18C109.5
N1—C7—C18121.0 (2)C10—C19—H19A109.5
C6—C7—C18117.0 (2)C10—C19—H19B109.5
N1—C8—C9110.42 (18)H19A—C19—H19B109.5
N1—C8—H8A109.6C10—C19—H19C109.5
C9—C8—H8A109.6H19A—C19—H19C109.5
N1—C8—H8B109.6H19B—C19—H19C109.5
C9—C8—H8B109.6O4—C20—H20A109.5
H8A—C8—H8B108.1O4—C20—H20B109.5
N2—C9—C8110.95 (18)H20A—C20—H20B109.5
N2—C9—H9A109.4O4—C20—H20C109.5
C8—C9—H9A109.4H20A—C20—H20C109.5
N2—C9—H9B109.4H20B—C20—H20C109.5
O2—Ni1—O1—C1166.3 (2)C8—N1—C7—C183.6 (3)
N1—Ni1—O1—C110.7 (2)Ni1—N1—C7—C18178.43 (16)
N2—Ni1—O1—C1162.0 (9)C1—C6—C7—N17.0 (3)
O1—Ni1—O2—C16172.8 (2)C5—C6—C7—N1174.1 (2)
N1—Ni1—O2—C16147.8 (9)C1—C6—C7—C18173.1 (2)
N2—Ni1—O2—C164.6 (2)C5—C6—C7—C185.8 (3)
O2—Ni1—N1—C733.3 (11)C7—N1—C8—C9164.8 (2)
O1—Ni1—N1—C75.7 (2)Ni1—N1—C8—C919.5 (2)
N2—Ni1—N1—C7176.6 (2)C10—N2—C9—C8168.1 (2)
O2—Ni1—N1—C8151.6 (9)Ni1—N2—C9—C817.5 (2)
O1—Ni1—N1—C8169.41 (15)N1—C8—C9—N223.6 (3)
N2—Ni1—N1—C88.25 (15)C9—N2—C10—C11176.6 (2)
O2—Ni1—N2—C101.8 (2)Ni1—N2—C10—C113.4 (3)
O1—Ni1—N2—C1029.6 (10)C9—N2—C10—C192.3 (3)
N1—Ni1—N2—C10179.0 (2)Ni1—N2—C10—C19175.59 (16)
O2—Ni1—N2—C9171.73 (15)N2—C10—C11—C167.2 (4)
O1—Ni1—N2—C9156.8 (9)C19—C10—C11—C16171.8 (2)
N1—Ni1—N2—C95.46 (16)N2—C10—C11—C12174.0 (2)
Ni1—O1—C1—C68.5 (3)C19—C10—C11—C127.0 (3)
Ni1—O1—C1—C2171.10 (16)C16—C11—C12—C132.3 (3)
O1—C1—C2—C3179.1 (2)C10—C11—C12—C13176.5 (2)
C6—C1—C2—C30.6 (4)C11—C12—C13—O4178.6 (2)
C1—C2—C3—C40.3 (4)C11—C12—C13—C140.7 (4)
C17—O3—C4—C58.2 (4)C20—O4—C13—C127.9 (4)
C17—O3—C4—C3171.5 (2)C20—O4—C13—C14174.1 (2)
C2—C3—C4—C50.2 (4)C12—C13—C14—C152.4 (4)
C2—C3—C4—O3179.5 (2)O4—C13—C14—C15179.5 (2)
O3—C4—C5—C6179.3 (3)C13—C14—C15—C161.0 (4)
C3—C4—C5—C60.4 (4)Ni1—O2—C16—C112.0 (3)
O1—C1—C6—C5179.2 (2)Ni1—O2—C16—C15178.21 (16)
C2—C1—C6—C50.4 (3)C12—C11—C16—O2176.6 (2)
O1—C1—C6—C71.9 (4)C10—C11—C16—O24.6 (4)
C2—C1—C6—C7178.5 (2)C12—C11—C16—C153.7 (3)
C4—C5—C6—C10.1 (4)C10—C11—C16—C15175.2 (2)
C4—C5—C6—C7179.0 (2)C14—C15—C16—O2178.2 (2)
C8—N1—C7—C6176.5 (2)C14—C15—C16—C112.1 (4)
Ni1—N1—C7—C61.6 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z; (iii) x+1/2, y+5/2, z; (iv) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O10.842.413.1173 (19)143
O1W—H1W1···O20.842.212.9077 (16)141
C8—H8A···O2i0.972.473.319 (3)146
C9—H9A···O1Wii0.972.523.407 (3)152
C18—H18B···Cg1iv0.962.713.385 (2)127
C19—H19C···Cg2iv0.962.813.652 (3)146
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z; (iv) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Ni(C20H22N2O4)]·0.5H2O
Mr422.11
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)29.1721 (7), 7.3032 (2), 17.2833 (4)
β (°) 101.323 (1)
V3)3610.53 (16)
Z8
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.33 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.712, 0.853
No. of measured, independent and
observed [I > 2˘I)] reflections
21087, 5319, 4166
Rint0.042
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.138, 1.04
No. of reflections5319
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 0.90

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Ni1—O21.8201 (16)Ni1—N11.8575 (19)
Ni1—O11.8315 (15)Ni1—N21.8617 (19)
Ni1···Ni1i3.4404 (4)Ni1···N2ii3.728 (2)
Ni1···Ni1ii4.1588 (4)Cg1···Cg3iii3.7905 (12)
Ni1···N1i3.383 (2)Cg3···Cg4iv3.5310 (11)
Ni1···N2i3.756 (2)Cg4···Cg4iii3.6152 (11)
O2—Ni1—O181.89 (7)O2—Ni1—N293.96 (8)
O2—Ni1—N1175.30 (8)O1—Ni1—N2175.13 (8)
O1—Ni1—N194.47 (8)N1—Ni1—N289.81 (8)
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z; (iii) x+1/2, y+5/2, z; (iv) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O10.84002.41003.1173 (19)143.00
O1W—H1W1···O20.84002.21002.9077 (16)141.00
C8—H8A···O2i0.97002.47003.319 (3)146.00
C9—H9A···O1Wii0.97002.52003.407 (3)152.00
C18—H18B···Cg1iv0.96002.71003.385 (2)127.00
C19—H19C···Cg2iv0.96002.81003.652 (3)146.00
Symmetry codes: (i) x, y+1, z; (ii) x, y+2, z; (iv) x+1/2, y+3/2, z.
 

Footnotes

Additional correspondance author, e-mail: zsrkk@yahoo.com.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem. 23, 109–112.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, pp. 223–226.  CSD CrossRef Google Scholar
First citationClark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, pp. 823–829.  CSD CrossRef Google Scholar
First citationClark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, pp. 396–399.  Google Scholar
First citationElmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008). Acta Cryst. E64. In the press. [AT2603]Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationHodgson, D. J. (1975). Prog. Inorg. Chem. 19, 173–202.  CrossRef CAS Google Scholar
First citationLi, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35–39.  CrossRef CAS Web of Science Google Scholar
First citationShahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956–962.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1081-m1082
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds