metal-organic compounds
{4,4′-Dimethoxy-2,2′-[1,1′-(ethane-1,2-diyldinitrilo)diethylidyne]diphenolato}nickel(II) hemihydrate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title complex, [Ni(C20H22N2O4)]·0.5H2O, the NiII ion is in a slightly distorted square-planar geometry involving an N2O2 atom set of the tetradentate Schiff base ligand. The contains one molecule of the complex and half a water solvent molecule. The solvent water molecule lies on a crystallographic twofold rotation axis. An intermolecular O—H⋯O hydrogen bond forms an R21(4) ring motif involving a bifurcated hydrogen bond to the phenolate O atoms of the complex. In the molecules are linked by π–π stacking interactions, with centroid–centroid distances in the range 3.5310 (11)–3.7905 (12) Å, forming extended chains along the b axis. In addition, there are Ni⋯Ni and Ni⋯N interactions [3.4404 (4)–4.1588 (4) and 3.383 (2)–3.756 (2) Å, respectively] which are shorter than the sum of the van der Waals radii of the relevant atoms. Further stabilization of the is attained by weak intermolecular C—H⋯O and C—H⋯π interactions.
Related literature
For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures see, for example: Clark et al. (1968, 1969, 1970); Hodgson (1975). For applications and bioactivities see, for example: Elmali et al. (2000); Blower (1998); Granovski et al. (1993); Li & Chang (1991); Shahrokhian et al. (2000); Fun & Kia (2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808023362/lh2663sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808023362/lh2663Isup2.hkl
A chloroform solution (40 ml) of the ligand (1 mmol, 354 mg) was added to a methanol solution (20 ml) of NiCl2.6H2O (1.05 mmol, 237 mg). The mixture was refluxed for 30 min and then filtered. After keeping the filtrate in air for 4 d, red block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.
The water H-atoms are located from the difference Fourier map and refined as riding with the parent atom with an isotropic thermal parameter 1.5 times that of the parent atom. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.93–97 Å] and refined using a riding model. A rotating-group model was used for the methyl groups.
Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intermolecular hydrogen bonds are drawn as dashed lines. | |
Fig. 2. The crystal packing of (I), viewd down the b axis, showing stacking of molecules along the b axis. Intramolecular and intermolecular interactions are drawn as dashed lines. |
[Ni(C20H22N2O4)]·0.5H2O | F(000) = 1776 |
Mr = 422.11 | Dx = 1.557 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 6474 reflections |
a = 29.1721 (7) Å | θ = 2.4–28.5° |
b = 7.3032 (2) Å | µ = 1.11 mm−1 |
c = 17.2833 (4) Å | T = 100 K |
β = 101.323 (1)° | Block, red |
V = 3610.53 (16) Å3 | 0.33 × 0.18 × 0.15 mm |
Z = 8 |
Bruker SMART APEXII CCD area-detector diffractometer | 5319 independent reflections |
Radiation source: fine-focus sealed tube | 4166 reflections with I > 2˘I) |
Graphite monochromator | Rint = 0.042 |
ϕ and ω scans | θmax = 30.2°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −35→41 |
Tmin = 0.712, Tmax = 0.853 | k = −10→8 |
21087 measured reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0817P)2 + 1.6212P] where P = (Fo2 + 2Fc2)/3 |
5319 reflections | (Δ/σ)max < 0.001 |
253 parameters | Δρmax = 1.43 e Å−3 |
0 restraints | Δρmin = −0.90 e Å−3 |
[Ni(C20H22N2O4)]·0.5H2O | V = 3610.53 (16) Å3 |
Mr = 422.11 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 29.1721 (7) Å | µ = 1.11 mm−1 |
b = 7.3032 (2) Å | T = 100 K |
c = 17.2833 (4) Å | 0.33 × 0.18 × 0.15 mm |
β = 101.323 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 5319 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 4166 reflections with I > 2˘I) |
Tmin = 0.712, Tmax = 0.853 | Rint = 0.042 |
21087 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.138 | H-atom parameters constrained |
S = 1.04 | Δρmax = 1.43 e Å−3 |
5319 reflections | Δρmin = −0.90 e Å−3 |
253 parameters |
Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.013248 (10) | 0.72441 (4) | 0.025207 (15) | 0.01283 (11) | |
O1 | 0.04524 (6) | 0.6694 (2) | 0.12462 (9) | 0.0166 (3) | |
O2 | −0.02834 (6) | 0.8182 (2) | 0.08056 (9) | 0.0163 (3) | |
O3 | 0.22776 (6) | 0.4706 (3) | 0.23839 (11) | 0.0386 (6) | |
O4 | −0.20747 (6) | 1.0823 (3) | −0.00397 (10) | 0.0263 (4) | |
N1 | 0.05957 (7) | 0.6362 (3) | −0.02489 (11) | 0.0148 (4) | |
N2 | −0.02394 (7) | 0.7776 (3) | −0.07261 (11) | 0.0138 (4) | |
C1 | 0.08918 (8) | 0.6183 (3) | 0.14511 (13) | 0.0146 (4) | |
C2 | 0.10797 (8) | 0.6091 (3) | 0.22710 (13) | 0.0174 (5) | |
H2A | 0.0889 | 0.6372 | 0.2627 | 0.021* | |
C3 | 0.15355 (9) | 0.5599 (4) | 0.25526 (14) | 0.0229 (5) | |
H3A | 0.1651 | 0.5554 | 0.3094 | 0.027* | |
C4 | 0.18251 (9) | 0.5167 (4) | 0.20272 (14) | 0.0221 (5) | |
C5 | 0.16555 (8) | 0.5227 (3) | 0.12301 (13) | 0.0184 (5) | |
H5A | 0.1852 | 0.4928 | 0.0885 | 0.022* | |
C6 | 0.11850 (8) | 0.5736 (3) | 0.09201 (13) | 0.0148 (4) | |
C7 | 0.10115 (8) | 0.5758 (3) | 0.00639 (13) | 0.0148 (5) | |
C8 | 0.04336 (8) | 0.6242 (3) | −0.11176 (12) | 0.0155 (5) | |
H8A | 0.0355 | 0.4982 | −0.1266 | 0.019* | |
H8B | 0.0683 | 0.6625 | −0.1379 | 0.019* | |
C9 | 0.00088 (9) | 0.7449 (3) | −0.13816 (13) | 0.0167 (5) | |
H9A | 0.0106 | 0.8611 | −0.1568 | 0.020* | |
H9B | −0.0202 | 0.6866 | −0.1816 | 0.020* | |
C10 | −0.06551 (8) | 0.8514 (3) | −0.08899 (13) | 0.0147 (4) | |
C11 | −0.09141 (8) | 0.8976 (3) | −0.02736 (13) | 0.0150 (4) | |
C12 | −0.13832 (8) | 0.9617 (3) | −0.04730 (13) | 0.0165 (5) | |
H12A | −0.1531 | 0.9677 | −0.1001 | 0.020* | |
C13 | −0.16223 (8) | 1.0148 (3) | 0.00996 (14) | 0.0182 (5) | |
C14 | −0.14041 (8) | 1.0085 (3) | 0.08966 (13) | 0.0184 (5) | |
H14A | −0.1562 | 1.0488 | 0.1283 | 0.022* | |
C15 | −0.09594 (8) | 0.9432 (3) | 0.11049 (13) | 0.0161 (5) | |
H15A | −0.0819 | 0.9378 | 0.1636 | 0.019* | |
C16 | −0.07050 (8) | 0.8834 (3) | 0.05342 (13) | 0.0152 (5) | |
C17 | 0.26105 (9) | 0.4494 (4) | 0.19015 (16) | 0.0292 (6) | |
H17A | 0.2906 | 0.4159 | 0.2221 | 0.044* | |
H17B | 0.2643 | 0.5626 | 0.1636 | 0.044* | |
H17C | 0.2510 | 0.3552 | 0.1519 | 0.044* | |
C18 | 0.13369 (9) | 0.5047 (3) | −0.04465 (14) | 0.0185 (5) | |
H18A | 0.1160 | 0.4753 | −0.0961 | 0.028* | |
H18B | 0.1493 | 0.3968 | −0.0210 | 0.028* | |
H18C | 0.1565 | 0.5968 | −0.0493 | 0.028* | |
C19 | −0.08767 (8) | 0.8943 (3) | −0.17351 (13) | 0.0187 (5) | |
H19A | −0.0638 | 0.9289 | −0.2019 | 0.028* | |
H19B | −0.1095 | 0.9932 | −0.1747 | 0.028* | |
H19C | −0.1038 | 0.7879 | −0.1977 | 0.028* | |
C20 | −0.23260 (9) | 1.0747 (4) | −0.08316 (15) | 0.0263 (6) | |
H20A | −0.2635 | 1.1232 | −0.0858 | 0.039* | |
H20B | −0.2347 | 0.9498 | −0.1009 | 0.039* | |
H20C | −0.2166 | 1.1459 | −0.1163 | 0.039* | |
O1W | 0.0000 | 0.8705 (3) | 0.2500 | 0.0218 (5) | |
H1W1 | −0.0017 | 0.8066 | 0.2094 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01457 (17) | 0.01553 (18) | 0.00876 (15) | 0.00044 (11) | 0.00319 (11) | −0.00026 (10) |
O1 | 0.0164 (8) | 0.0229 (9) | 0.0106 (7) | 0.0030 (7) | 0.0031 (6) | −0.0001 (6) |
O2 | 0.0169 (8) | 0.0207 (9) | 0.0114 (7) | 0.0043 (7) | 0.0026 (6) | −0.0012 (6) |
O3 | 0.0139 (9) | 0.0829 (18) | 0.0188 (9) | 0.0118 (10) | 0.0030 (8) | 0.0066 (10) |
O4 | 0.0159 (9) | 0.0410 (12) | 0.0216 (9) | 0.0080 (8) | 0.0026 (7) | −0.0027 (8) |
N1 | 0.0197 (10) | 0.0146 (10) | 0.0110 (8) | −0.0028 (8) | 0.0055 (7) | −0.0004 (7) |
N2 | 0.0176 (10) | 0.0149 (9) | 0.0095 (8) | −0.0008 (8) | 0.0042 (7) | −0.0002 (7) |
C1 | 0.0161 (11) | 0.0139 (11) | 0.0139 (10) | −0.0014 (9) | 0.0029 (8) | 0.0002 (8) |
C2 | 0.0187 (12) | 0.0222 (12) | 0.0124 (10) | −0.0009 (9) | 0.0058 (9) | −0.0007 (9) |
C3 | 0.0200 (13) | 0.0356 (15) | 0.0121 (11) | −0.0034 (11) | 0.0007 (9) | 0.0027 (10) |
C4 | 0.0146 (12) | 0.0341 (15) | 0.0173 (11) | 0.0013 (11) | 0.0022 (9) | 0.0037 (10) |
C5 | 0.0155 (12) | 0.0249 (13) | 0.0155 (11) | 0.0008 (10) | 0.0050 (9) | −0.0003 (9) |
C6 | 0.0158 (11) | 0.0154 (11) | 0.0134 (10) | −0.0018 (9) | 0.0034 (8) | −0.0002 (8) |
C7 | 0.0184 (12) | 0.0136 (11) | 0.0135 (10) | −0.0024 (9) | 0.0055 (9) | −0.0005 (8) |
C8 | 0.0182 (11) | 0.0178 (11) | 0.0116 (10) | 0.0007 (9) | 0.0056 (8) | −0.0010 (8) |
C9 | 0.0187 (12) | 0.0212 (12) | 0.0111 (10) | −0.0013 (9) | 0.0050 (9) | 0.0002 (8) |
C10 | 0.0170 (11) | 0.0141 (11) | 0.0124 (10) | −0.0022 (9) | 0.0012 (8) | 0.0009 (8) |
C11 | 0.0184 (12) | 0.0128 (11) | 0.0141 (10) | −0.0017 (9) | 0.0042 (9) | −0.0004 (8) |
C12 | 0.0165 (12) | 0.0169 (12) | 0.0145 (10) | −0.0004 (9) | −0.0009 (9) | 0.0026 (8) |
C13 | 0.0150 (11) | 0.0212 (12) | 0.0178 (11) | 0.0033 (9) | 0.0023 (9) | 0.0011 (9) |
C14 | 0.0193 (12) | 0.0219 (13) | 0.0154 (11) | 0.0016 (10) | 0.0073 (9) | −0.0011 (9) |
C15 | 0.0186 (12) | 0.0171 (11) | 0.0126 (10) | −0.0002 (9) | 0.0032 (9) | −0.0003 (8) |
C16 | 0.0171 (11) | 0.0125 (11) | 0.0163 (10) | −0.0001 (9) | 0.0039 (9) | −0.0001 (8) |
C17 | 0.0186 (13) | 0.0424 (17) | 0.0284 (14) | 0.0081 (12) | 0.0089 (11) | 0.0058 (12) |
C18 | 0.0191 (12) | 0.0210 (12) | 0.0165 (11) | 0.0026 (10) | 0.0064 (9) | −0.0015 (9) |
C19 | 0.0214 (12) | 0.0215 (12) | 0.0124 (10) | 0.0021 (10) | 0.0014 (9) | 0.0013 (9) |
C20 | 0.0183 (13) | 0.0335 (15) | 0.0246 (13) | 0.0054 (11) | −0.0019 (10) | −0.0003 (11) |
O1W | 0.0307 (14) | 0.0245 (14) | 0.0100 (10) | 0.000 | 0.0039 (10) | 0.000 |
Ni1—O2 | 1.8201 (16) | C8—H8B | 0.9700 |
Ni1—O1 | 1.8315 (15) | C9—H9A | 0.9700 |
Ni1—N1 | 1.8575 (19) | C9—H9B | 0.9700 |
Ni1—N2 | 1.8617 (19) | C10—C11 | 1.461 (3) |
O1—C1 | 1.315 (3) | C10—C19 | 1.510 (3) |
O2—C16 | 1.316 (3) | C11—C16 | 1.413 (3) |
O3—C4 | 1.384 (3) | C11—C12 | 1.423 (3) |
O3—C17 | 1.407 (3) | C12—C13 | 1.374 (3) |
O4—C13 | 1.385 (3) | C12—H12A | 0.9300 |
O4—C20 | 1.421 (3) | C13—C14 | 1.400 (3) |
N1—C7 | 1.304 (3) | C14—C15 | 1.363 (3) |
N1—C8 | 1.486 (3) | C14—H14A | 0.9300 |
N2—C10 | 1.307 (3) | C15—C16 | 1.415 (3) |
N2—C9 | 1.479 (3) | C15—H15A | 0.9300 |
C1—C6 | 1.410 (3) | C17—H17A | 0.9600 |
C1—C2 | 1.417 (3) | C17—H17B | 0.9600 |
C2—C3 | 1.371 (3) | C17—H17C | 0.9600 |
C2—H2A | 0.9300 | C18—H18A | 0.9600 |
C3—C4 | 1.392 (3) | C18—H18B | 0.9600 |
C3—H3A | 0.9300 | C18—H18C | 0.9600 |
C4—C5 | 1.370 (3) | C19—H19A | 0.9600 |
C5—C6 | 1.422 (3) | C19—H19B | 0.9600 |
C5—H5A | 0.9300 | C19—H19C | 0.9600 |
C6—C7 | 1.467 (3) | C20—H20A | 0.9600 |
C7—C18 | 1.509 (3) | C20—H20B | 0.9600 |
C8—C9 | 1.516 (3) | C20—H20C | 0.9600 |
C8—H8A | 0.9700 | O1W—H1W1 | 0.8359 |
Ni1···Ni1i | 3.4404 (4) | Ni1···N2ii | 3.728 (2) |
Ni1···Ni1ii | 4.1588 (4) | Cg1···Cg3iii | 3.7905 (12) |
Ni1···N1i | 3.383 (2) | Cg3···Cg4iv | 3.5310 (11) |
Ni1···N2i | 3.756 (2) | Cg4···Cg4iii | 3.6152 (11) |
O2—Ni1—O1 | 81.89 (7) | C8—C9—H9B | 109.4 |
O2—Ni1—N1 | 175.30 (8) | H9A—C9—H9B | 108.0 |
O1—Ni1—N1 | 94.47 (8) | N2—C10—C11 | 121.9 (2) |
O2—Ni1—N2 | 93.96 (8) | N2—C10—C19 | 119.9 (2) |
O1—Ni1—N2 | 175.13 (8) | C11—C10—C19 | 118.2 (2) |
N1—Ni1—N2 | 89.81 (8) | C16—C11—C12 | 118.1 (2) |
C1—O1—Ni1 | 127.23 (14) | C16—C11—C10 | 121.2 (2) |
C16—O2—Ni1 | 128.42 (14) | C12—C11—C10 | 120.6 (2) |
C4—O3—C17 | 118.2 (2) | C13—C12—C11 | 121.2 (2) |
C13—O4—C20 | 116.57 (19) | C13—C12—H12A | 119.4 |
C7—N1—C8 | 118.98 (19) | C11—C12—H12A | 119.4 |
C7—N1—Ni1 | 128.81 (16) | C12—C13—O4 | 125.2 (2) |
C8—N1—Ni1 | 112.03 (14) | C12—C13—C14 | 120.2 (2) |
C10—N2—C9 | 118.29 (19) | O4—C13—C14 | 114.6 (2) |
C10—N2—Ni1 | 129.30 (16) | C15—C14—C13 | 119.8 (2) |
C9—N2—Ni1 | 112.11 (15) | C15—C14—H14A | 120.1 |
O1—C1—C6 | 125.0 (2) | C13—C14—H14A | 120.1 |
O1—C1—C2 | 116.6 (2) | C14—C15—C16 | 121.8 (2) |
C6—C1—C2 | 118.4 (2) | C14—C15—H15A | 119.1 |
C3—C2—C1 | 121.7 (2) | C16—C15—H15A | 119.1 |
C3—C2—H2A | 119.2 | O2—C16—C11 | 124.8 (2) |
C1—C2—H2A | 119.2 | O2—C16—C15 | 116.4 (2) |
C2—C3—C4 | 119.9 (2) | C11—C16—C15 | 118.8 (2) |
C2—C3—H3A | 120.1 | O3—C17—H17A | 109.5 |
C4—C3—H3A | 120.1 | O3—C17—H17B | 109.5 |
C5—C4—O3 | 125.5 (2) | H17A—C17—H17B | 109.5 |
C5—C4—C3 | 120.2 (2) | O3—C17—H17C | 109.5 |
O3—C4—C3 | 114.4 (2) | H17A—C17—H17C | 109.5 |
C4—C5—C6 | 121.2 (2) | H17B—C17—H17C | 109.5 |
C4—C5—H5A | 119.4 | C7—C18—H18A | 109.5 |
C6—C5—H5A | 119.4 | C7—C18—H18B | 109.5 |
C1—C6—C5 | 118.6 (2) | H18A—C18—H18B | 109.5 |
C1—C6—C7 | 121.4 (2) | C7—C18—H18C | 109.5 |
C5—C6—C7 | 119.9 (2) | H18A—C18—H18C | 109.5 |
N1—C7—C6 | 122.0 (2) | H18B—C18—H18C | 109.5 |
N1—C7—C18 | 121.0 (2) | C10—C19—H19A | 109.5 |
C6—C7—C18 | 117.0 (2) | C10—C19—H19B | 109.5 |
N1—C8—C9 | 110.42 (18) | H19A—C19—H19B | 109.5 |
N1—C8—H8A | 109.6 | C10—C19—H19C | 109.5 |
C9—C8—H8A | 109.6 | H19A—C19—H19C | 109.5 |
N1—C8—H8B | 109.6 | H19B—C19—H19C | 109.5 |
C9—C8—H8B | 109.6 | O4—C20—H20A | 109.5 |
H8A—C8—H8B | 108.1 | O4—C20—H20B | 109.5 |
N2—C9—C8 | 110.95 (18) | H20A—C20—H20B | 109.5 |
N2—C9—H9A | 109.4 | O4—C20—H20C | 109.5 |
C8—C9—H9A | 109.4 | H20A—C20—H20C | 109.5 |
N2—C9—H9B | 109.4 | H20B—C20—H20C | 109.5 |
O2—Ni1—O1—C1 | −166.3 (2) | C8—N1—C7—C18 | 3.6 (3) |
N1—Ni1—O1—C1 | 10.7 (2) | Ni1—N1—C7—C18 | 178.43 (16) |
N2—Ni1—O1—C1 | 162.0 (9) | C1—C6—C7—N1 | 7.0 (3) |
O1—Ni1—O2—C16 | −172.8 (2) | C5—C6—C7—N1 | −174.1 (2) |
N1—Ni1—O2—C16 | 147.8 (9) | C1—C6—C7—C18 | −173.1 (2) |
N2—Ni1—O2—C16 | 4.6 (2) | C5—C6—C7—C18 | 5.8 (3) |
O2—Ni1—N1—C7 | 33.3 (11) | C7—N1—C8—C9 | −164.8 (2) |
O1—Ni1—N1—C7 | −5.7 (2) | Ni1—N1—C8—C9 | 19.5 (2) |
N2—Ni1—N1—C7 | 176.6 (2) | C10—N2—C9—C8 | −168.1 (2) |
O2—Ni1—N1—C8 | −151.6 (9) | Ni1—N2—C9—C8 | 17.5 (2) |
O1—Ni1—N1—C8 | 169.41 (15) | N1—C8—C9—N2 | −23.6 (3) |
N2—Ni1—N1—C8 | −8.25 (15) | C9—N2—C10—C11 | −176.6 (2) |
O2—Ni1—N2—C10 | −1.8 (2) | Ni1—N2—C10—C11 | −3.4 (3) |
O1—Ni1—N2—C10 | 29.6 (10) | C9—N2—C10—C19 | 2.3 (3) |
N1—Ni1—N2—C10 | −179.0 (2) | Ni1—N2—C10—C19 | 175.59 (16) |
O2—Ni1—N2—C9 | 171.73 (15) | N2—C10—C11—C16 | 7.2 (4) |
O1—Ni1—N2—C9 | −156.8 (9) | C19—C10—C11—C16 | −171.8 (2) |
N1—Ni1—N2—C9 | −5.46 (16) | N2—C10—C11—C12 | −174.0 (2) |
Ni1—O1—C1—C6 | −8.5 (3) | C19—C10—C11—C12 | 7.0 (3) |
Ni1—O1—C1—C2 | 171.10 (16) | C16—C11—C12—C13 | 2.3 (3) |
O1—C1—C2—C3 | −179.1 (2) | C10—C11—C12—C13 | −176.5 (2) |
C6—C1—C2—C3 | 0.6 (4) | C11—C12—C13—O4 | 178.6 (2) |
C1—C2—C3—C4 | −0.3 (4) | C11—C12—C13—C14 | 0.7 (4) |
C17—O3—C4—C5 | 8.2 (4) | C20—O4—C13—C12 | 7.9 (4) |
C17—O3—C4—C3 | −171.5 (2) | C20—O4—C13—C14 | −174.1 (2) |
C2—C3—C4—C5 | −0.2 (4) | C12—C13—C14—C15 | −2.4 (4) |
C2—C3—C4—O3 | 179.5 (2) | O4—C13—C14—C15 | 179.5 (2) |
O3—C4—C5—C6 | −179.3 (3) | C13—C14—C15—C16 | 1.0 (4) |
C3—C4—C5—C6 | 0.4 (4) | Ni1—O2—C16—C11 | −2.0 (3) |
O1—C1—C6—C5 | 179.2 (2) | Ni1—O2—C16—C15 | 178.21 (16) |
C2—C1—C6—C5 | −0.4 (3) | C12—C11—C16—O2 | 176.6 (2) |
O1—C1—C6—C7 | −1.9 (4) | C10—C11—C16—O2 | −4.6 (4) |
C2—C1—C6—C7 | 178.5 (2) | C12—C11—C16—C15 | −3.7 (3) |
C4—C5—C6—C1 | −0.1 (4) | C10—C11—C16—C15 | 175.2 (2) |
C4—C5—C6—C7 | −179.0 (2) | C14—C15—C16—O2 | −178.2 (2) |
C8—N1—C7—C6 | −176.5 (2) | C14—C15—C16—C11 | 2.1 (4) |
Ni1—N1—C7—C6 | −1.6 (3) |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y+2, −z; (iii) x+1/2, y+5/2, z; (iv) x+1/2, y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O1 | 0.84 | 2.41 | 3.1173 (19) | 143 |
O1W—H1W1···O2 | 0.84 | 2.21 | 2.9077 (16) | 141 |
C8—H8A···O2i | 0.97 | 2.47 | 3.319 (3) | 146 |
C9—H9A···O1Wii | 0.97 | 2.52 | 3.407 (3) | 152 |
C18—H18B···Cg1iv | 0.96 | 2.71 | 3.385 (2) | 127 |
C19—H19C···Cg2iv | 0.96 | 2.81 | 3.652 (3) | 146 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y+2, −z; (iv) x+1/2, y+3/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C20H22N2O4)]·0.5H2O |
Mr | 422.11 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 100 |
a, b, c (Å) | 29.1721 (7), 7.3032 (2), 17.2833 (4) |
β (°) | 101.323 (1) |
V (Å3) | 3610.53 (16) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.11 |
Crystal size (mm) | 0.33 × 0.18 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.712, 0.853 |
No. of measured, independent and observed [I > 2˘I)] reflections | 21087, 5319, 4166 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.707 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.138, 1.04 |
No. of reflections | 5319 |
No. of parameters | 253 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.43, −0.90 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
Ni1—O2 | 1.8201 (16) | Ni1—N1 | 1.8575 (19) |
Ni1—O1 | 1.8315 (15) | Ni1—N2 | 1.8617 (19) |
Ni1···Ni1i | 3.4404 (4) | Ni1···N2ii | 3.728 (2) |
Ni1···Ni1ii | 4.1588 (4) | Cg1···Cg3iii | 3.7905 (12) |
Ni1···N1i | 3.383 (2) | Cg3···Cg4iv | 3.5310 (11) |
Ni1···N2i | 3.756 (2) | Cg4···Cg4iii | 3.6152 (11) |
O2—Ni1—O1 | 81.89 (7) | O2—Ni1—N2 | 93.96 (8) |
O2—Ni1—N1 | 175.30 (8) | O1—Ni1—N2 | 175.13 (8) |
O1—Ni1—N1 | 94.47 (8) | N1—Ni1—N2 | 89.81 (8) |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y+2, −z; (iii) x+1/2, y+5/2, z; (iv) x+1/2, y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O1 | 0.8400 | 2.4100 | 3.1173 (19) | 143.00 |
O1W—H1W1···O2 | 0.8400 | 2.2100 | 2.9077 (16) | 141.00 |
C8—H8A···O2i | 0.9700 | 2.4700 | 3.319 (3) | 146.00 |
C9—H9A···O1Wii | 0.9700 | 2.5200 | 3.407 (3) | 152.00 |
C18—H18B···Cg1iv | 0.9600 | 2.7100 | 3.385 (2) | 127.00 |
C19—H19C···Cg2iv | 0.9600 | 2.8100 | 3.652 (3) | 146.00 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y+2, −z; (iv) x+1/2, y+3/2, z. |
Footnotes
‡Additional correspondance author, e-mail: zsrkk@yahoo.com.
Acknowledgements
HKF and RK thank the Malaysian Government and Universiti sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Blower, P. J. (1998). Transition Met. Chem. 23, 109–112. CrossRef CAS Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clark, G. R., Hall, D. & Waters, T. N. (1968). J. Chem. Soc. A, pp. 223–226. CSD CrossRef Google Scholar
Clark, G. R., Hall, D. & Waters, T. N. (1969). J. Chem. Soc. A, pp. 823–829. CSD CrossRef Google Scholar
Clark, G. R., Hall, D. & Waters, T. N. (1970). J. Chem. Soc. A, pp. 396–399. Google Scholar
Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424. CSD CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64. In the press. [AT2603]. Google Scholar
Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69. Google Scholar
Hodgson, D. J. (1975). Prog. Inorg. Chem. 19, 173–202. CrossRef CAS Google Scholar
Li, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35–39. CrossRef CAS Web of Science Google Scholar
Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956–962. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff base complexes are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993). Transition metal complexes of Schiff base ligands are always of interest since they exhibit a marked tendency to oligomerize, thus leading to novel structural types, and also display a wide variety of magnetic properties. Many of the reported structural investigations of these complexes are discussed in some details in a review (Hodgson, 1975). Metal derivatives of Schiff bases have been studied extensively, and Cu(II) and Ni(II) complexes play a major role in both synthetic and structural research (Elmali et al., 2000; Blower, 1993; Fun & Kia, 2008; Granovski et al., 1993; Li & Chang, 1991; Shahrokhian et al., 2000). Tetradentate Schiff base metal complexes may form trans or cis planar or tetrahedral structures (Elmali et al., 2000).
In the title compound (I, Fig. 1), the NiII ion shows a sligthly distorted square-planar geometry which is coordinated by two imine N atoms and two phenol O atoms of the tetradentate Schiff base ligand. An intermolecular O—H···O hydrogen bond forms a four-membered ring, producing a R12(4) ring motif (Bernstein et al., 1995). The bond lengths are within the normal ranges (Allen et al., 1987). The asymmetric unit of the compound contains one molecule of the complex, and one-half of the water solvent. The latter shows bifurcated hydrogen bond which is connected to the phenolato oxygen atoms of the complex. Atoms C8 and C9 are significantly out of the plane, as indicated by the torsion angle N1–C8–C9–N2, which is -23.6 (3)°. The dihedral angle betwen two benzene rings is 5.13 (11)°. In the crystal structure, (Fig. 2), the molecules are form 1-D extended chains along the b axis with Ni···Ni and Ni···N separations (Table 2) of 3.4404 (4) – 4.1588 (4), and 3.383 (2) – 3.756 (2) Å, and short intermolecular distances between the centroids of the six-membered rings [3.5310 (11) – 3.7905 (12) Å], respectively. The Ni···Ni dimeric separations are significantly shorter than the sum of the van der Waals radii of two Ni atoms (4.60 Å). The crystal packing is stabilized by intermolecular O—H···O (x 2), and C—H···O (x 2) hydrogen bonds, and weak intermolecular C—H···π interactions.