organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Phenyl­adamantane-1-sulfinamide

aDepartment of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea, and bDepartment of Chemistry, Korea University, Seoul 136-701, Republic of Korea
*Correspondence e-mail: ajbuglass@kaist.ac.kr

(Received 11 June 2008; accepted 27 June 2008; online 5 July 2008)

In the racemic title compound, C16H21NOS, the mol­ecules are packed into polymeric chains in the b-axis direction and are linked along the b axis by N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For literature on N-alkyl­alkanesulfinamides, see: Sato et al. (1975[Sato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385-1392.]), Schuckmann et al. (1978[Schuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516-1520.]); Ferreira et al. (2005[Ferreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J. 11, 5269-5278.]). For related literature on cyclic N-aryl­alkanesulfinamides (sultims), see: Schulze et al. (2005[Schulze, B., Taubert, K., Siegemund, A., Freysoldt, T. H. E. & Sieler, J. (2005). Z. Naturforsch. Teil B, 60, 41-47.]). For the synthesis, see: Stretter et al. (1969[Stretter, H., Krause, M. & Last, W.-D. (1969). Chem. Ber. 102, 3357-3363.]). For related literature, see: Han et al. (2002[Han, Z., Krishnamurthy, D., Pflum, D., Glover, P., Wald, S. A. & Senanayake, C. H. (2002). Org. Lett. 4, 4025-1428.]); Weix & Ellman (2003[Weix, D. J. & Ellman, J. A. (2003). Org. Lett. 5, 1317-1320.]).

[Scheme 1]

Experimental

Crystal data
  • C16H21NOS

  • Mr = 275.40

  • Monoclinic, P 21 /c

  • a = 11.6614 (2) Å

  • b = 14.5582 (3) Å

  • c = 9.0632 (2) Å

  • β = 109.7770 (10)°

  • V = 1447.90 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 (2) K

  • 0.12 × 0.08 × 0.06 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.987

  • 14147 measured reflections

  • 3563 independent reflections

  • 2623 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.126

  • S = 1.07

  • 3563 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.17 2.988 (2) 160
C10—H10A⋯O1i 0.97 2.35 3.305 (2) 168
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound (I) was prepared from aniline and 1-adamantanesulfinyl chloride, which was itself prepared from adamantane and thionyl chloride in the presence of anhydrous AlCl3 (Stretter et al., 1969).

The molecular structure of (I) (Fig. 1) resembles those of N-alkylsulfinamides, except that the N-(aryl)C bond (1.409 Å) is considerably shorter than typical N-(alkyl)C bonds in N-alkylsulfinamides (1.470–1.530 Å) (Sato et al., 1975; Schuckmann et al., 1978; Ferreira et al., 2005). The short bond suggests significant delocalization of electrons over the nitrogen atom and the benzene ring. This can be interpreted as indicating considerable contributions to the overall structure of (I) from resonance structures such as those in Fig. 2. The molecules of (I) (with alternating (R) and (S) configurations) are packed in a chain along the b axis (Fig. 3). The crystal packing (Fig. 3) is stabilized by intermolecular N—H···O and C—H···O hydrogen bonds (Fig. 3 and Table 1; symmetry code as in Fig. 3). Interest in sulfinamides lies mainly in their performance as chiral building blocks in organic synthesis (Han et al., 2002; Weix and Ellman, 2003).

Related literature top

For literature on N-alkylalkanesulfinamides, see: Sato et al. (1975), Schuckmann et al. (1978); Ferreira et al. (2005). For related literature on cyclic N-arylalkanesulfinamides (sultims), see: Schulze et al. (2005). For the synthesis, see: Stretter et al. (1969). For related literature, see: Han et al. (2002); Weix & Ellman (2003).

Experimental top

Compound (I) was prepared by the method of Stretter et al.(1969), using aniline (424 mg, 4.56 mmol), 1-adamantanesulfinyl chloride (500 mg, 2.28 mmol) and anhydrous diethyl ether (30 ml). Column chromatography (silica gel, ethyl acetate-dichloromethane, 1:9) gave (I) as white crystals (610 mg, 97%) mp 427–428 K. Literature mp was 428 K (Stretter et al., 1969). Single crystals suitable for X-ray analysis were obtained by evaporation of a solution of the title compound (I) in dichloromethane at room temperature. Spectroscopic analysis: FTIR (KBr) (cm-1) 3179, 2908, 2851, 1595, 1488, 1450, 1285, 1228, 1175, 1063, 1034, 877. 1H NMR (400 MHz, CDCl3, p.p.m. with respect to TMS) 7.26–7.22 (m, 2H), 7.01–6.97 (m, 3H), 5.43 (bs, 1H), 2.18 (s, 3H), 1.92 (dd, J = 11.8, 22.8 Hz, 6H), 1.74 (dd, J = 12.2, 23.4 Hz, 6H). 13C NMR (100 MHz, CDCl3, p.p.m. with respect to TMS) 142.4, 129.2, 122.4, 117.9, 58.2, 36.3, 34.6, 28.5. EIMS m/z (%) 276 (MH+,39), 275 (M+, 85), 259(M+–16, 16), 228 (18), 227 (M+–SO,75), 136 (59), 135 (M+–PhNHSO, 100), 107 (28), 93 (MH+–adamantanesulfinyl, 66), 79 (61).

Refinement top

H atoms were located on a difference Fourier map geometrically and refined using a riding model with N—H = 0.86 Å, C—H = 0.93–0.98 Å and with Uiso(H) = 1.2 times Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Resonance structures for (I).
[Figure 3] Fig. 3. The packing of (I), viewed down the b axis, showing hydrogen bonding [symmetry code: (i) x, -y + 1/2, z - 1/2; (ii) x, -y + 1/2, z + 1/2].
N-Phenyladamantane-1-sulfinamide top
Crystal data top
C16H21NOSF(000) = 592
Mr = 275.40Dx = 1.263 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4542 reflections
a = 11.6614 (2) Åθ = 2.3–18.3°
b = 14.5582 (3) ŵ = 0.22 mm1
c = 9.0632 (2) ÅT = 293 K
β = 109.777 (1)°Block, white
V = 1447.90 (5) Å30.12 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
3563 independent reflections
Radiation source: fine-focus sealed tube2623 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.975, Tmax = 0.987k = 1819
14147 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.1762P]
where P = (Fo2 + 2Fc2)/3
3563 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H21NOSV = 1447.90 (5) Å3
Mr = 275.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6614 (2) ŵ = 0.22 mm1
b = 14.5582 (3) ÅT = 293 K
c = 9.0632 (2) Å0.12 × 0.08 × 0.06 mm
β = 109.777 (1)°
Data collection top
Bruker APEXII
diffractometer
3563 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2623 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.987Rint = 0.030
14147 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.07Δρmax = 0.28 e Å3
3563 reflectionsΔρmin = 0.30 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.58983 (13)0.39058 (9)0.82150 (16)0.0364 (3)
C20.56242 (15)0.48043 (11)0.7296 (2)0.0484 (4)
H2A0.51870.52170.77570.058*
H2B0.51170.46850.62190.058*
C30.68250 (16)0.52473 (12)0.7334 (2)0.0580 (5)
H30.66520.58240.67410.070*
C40.76125 (18)0.54460 (12)0.9024 (3)0.0638 (5)
H4A0.83680.57360.90470.077*
H4B0.71880.58630.94960.077*
C50.78874 (16)0.45500 (12)0.9943 (2)0.0535 (4)
H50.83970.46771.10290.064*
C60.66905 (15)0.41030 (12)0.99233 (18)0.0481 (4)
H6A0.62610.45111.04030.058*
H6B0.68610.35351.05170.058*
C70.74864 (17)0.45997 (14)0.6590 (2)0.0619 (5)
H7A0.82390.48810.65830.074*
H7B0.69830.44760.55140.074*
C80.77682 (15)0.37019 (13)0.7515 (2)0.0536 (4)
H80.82030.32880.70340.064*
C90.85636 (16)0.38968 (13)0.9200 (2)0.0579 (4)
H9A0.93260.41730.92200.069*
H9B0.87480.33270.97890.069*
C100.65764 (15)0.32443 (11)0.7496 (2)0.0473 (4)
H10A0.60770.30990.64270.057*
H10B0.67540.26780.80940.057*
S10.44633 (4)0.34441 (3)0.82885 (4)0.04623 (15)
O10.47547 (12)0.25339 (9)0.90826 (15)0.0702 (4)
N10.37398 (12)0.32958 (9)0.63941 (15)0.0463 (3)
H10.41530.31780.57900.056*
C110.24605 (13)0.33580 (9)0.57455 (18)0.0390 (3)
C120.18648 (15)0.29240 (11)0.4345 (2)0.0499 (4)
H120.23050.25730.38660.060*
C130.06152 (17)0.30068 (14)0.3647 (2)0.0657 (5)
H130.02230.27260.26870.079*
C140.00505 (17)0.35041 (14)0.4370 (3)0.0686 (6)
H140.08930.35460.39170.082*
C150.05395 (17)0.39325 (14)0.5752 (3)0.0654 (5)
H150.00940.42750.62350.078*
C160.17819 (16)0.38689 (13)0.6449 (2)0.0542 (4)
H160.21690.41690.73930.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0339 (7)0.0456 (7)0.0304 (7)0.0010 (6)0.0117 (6)0.0018 (6)
C20.0400 (8)0.0553 (9)0.0519 (9)0.0083 (7)0.0180 (7)0.0142 (7)
C30.0517 (10)0.0570 (10)0.0698 (12)0.0027 (8)0.0264 (9)0.0205 (9)
C40.0553 (11)0.0540 (10)0.0831 (14)0.0106 (8)0.0248 (10)0.0099 (9)
C50.0447 (9)0.0632 (10)0.0455 (9)0.0046 (7)0.0060 (8)0.0122 (8)
C60.0499 (10)0.0593 (9)0.0335 (8)0.0017 (7)0.0121 (7)0.0036 (7)
C70.0453 (10)0.0912 (13)0.0554 (10)0.0031 (9)0.0252 (9)0.0080 (9)
C80.0359 (9)0.0692 (10)0.0574 (10)0.0059 (7)0.0180 (8)0.0127 (8)
C90.0376 (9)0.0674 (11)0.0607 (11)0.0053 (8)0.0061 (8)0.0033 (9)
C100.0412 (9)0.0542 (9)0.0446 (8)0.0038 (7)0.0121 (7)0.0094 (7)
S10.0400 (2)0.0676 (3)0.0334 (2)0.00510 (17)0.01537 (18)0.00352 (16)
O10.0590 (8)0.0870 (9)0.0588 (8)0.0153 (7)0.0123 (7)0.0304 (7)
N10.0355 (7)0.0683 (9)0.0359 (7)0.0016 (6)0.0133 (6)0.0037 (6)
C110.0358 (8)0.0410 (7)0.0413 (8)0.0004 (6)0.0142 (7)0.0068 (6)
C120.0423 (9)0.0498 (9)0.0552 (10)0.0023 (7)0.0131 (8)0.0067 (7)
C130.0449 (10)0.0674 (11)0.0719 (13)0.0087 (9)0.0031 (9)0.0068 (10)
C140.0361 (10)0.0729 (12)0.0899 (16)0.0032 (8)0.0122 (11)0.0168 (11)
C150.0509 (11)0.0761 (12)0.0751 (14)0.0205 (9)0.0292 (10)0.0158 (10)
C160.0498 (10)0.0646 (10)0.0500 (10)0.0118 (8)0.0192 (8)0.0012 (8)
Geometric parameters (Å, º) top
C1—C101.525 (2)C8—C101.536 (2)
C1—C21.526 (2)C8—H80.980
C1—C61.538 (2)C9—H9A0.970
C1—S11.825 (2)C9—H9B0.970
C2—C31.531 (2)C10—H10A0.970
C2—H2A0.970C10—H10B0.970
C2—H2B0.970S1—O11.491 (1)
C3—C71.513 (3)S1—N11.651 (1)
C3—C41.523 (3)N1—C111.409 (2)
C3—H30.980N1—H10.860
C4—C51.522 (3)C11—C121.377 (2)
C4—H4A0.970C11—C161.388 (2)
C4—H4B0.970C12—C131.384 (2)
C5—C91.530 (2)C12—H120.930
C5—C61.535 (2)C13—C141.378 (3)
C5—H50.980C13—H130.930
C6—H6A0.970C14—C151.360 (3)
C6—H6B0.970C14—H140.930
C7—C81.527 (3)C15—C161.374 (3)
C7—H7A0.970C15—H150.930
C7—H7B0.970C16—H160.930
C8—C91.521 (2)
C10—C1—C2110.6 (1)C9—C8—C7109.7 (2)
C10—C1—C6109.0 (1)C9—C8—C10109.5 (1)
C2—C1—C6109.5 (1)C7—C8—C10109.8 (2)
C10—C1—S1113.4 (1)C9—C8—H8109.3
C2—C1—S1108.1 (1)C7—C8—H8109.3
C6—C1—S1106.1 (1)C10—C8—H8109.3
C1—C2—C3109.1 (1)C8—C9—C5109.2 (1)
C1—C2—H2A109.9C8—C9—H9A109.9
C3—C2—H2A109.9C5—C9—H9A109.9
C1—C2—H2B109.9C8—C9—H9B109.9
C3—C2—H2B109.9C5—C9—H9B109.9
H2A—C2—H2B108.3H9A—C9—H9B108.3
C7—C3—C4110.0 (2)C1—C10—C8108.6 (1)
C7—C3—C2109.1 (2)C1—C10—H10A110.0
C4—C3—C2109.8 (1)C8—C10—H10A110.0
C7—C3—H3109.3C1—C10—H10B110.0
C4—C3—H3109.3C8—C10—H10B110.0
C2—C3—H3109.3H10A—C10—H10B108.3
C5—C4—C3109.4 (1)O1—S1—N1109.79 (8)
C5—C4—H4A109.8O1—S1—C1106.43 (7)
C3—C4—H4A109.8N1—S1—C199.34 (6)
C5—C4—H4B109.8C11—N1—S1121.5 (1)
C3—C4—H4B109.8C11—N1—H1119.3
H4A—C4—H4B108.3S1—N1—H1119.3
C4—C5—C9109.6 (2)C12—C11—C16118.7 (2)
C4—C5—C6109.6 (1)C12—C11—N1119.2 (1)
C9—C5—C6109.5 (1)C16—C11—N1122.0 (1)
C4—C5—H5109.4C11—C12—C13120.4 (2)
C9—C5—H5109.4C11—C12—H12119.8
C6—C5—H5109.4C13—C12—H12119.8
C5—C6—C1109.0 (1)C14—C13—C12120.3 (2)
C5—C6—H6A109.9C14—C13—H13119.9
C1—C6—H6A109.9C12—C13—H13119.9
C5—C6—H6B109.9C15—C14—C13119.2 (2)
C1—C6—H6B109.9C15—C14—H14120.4
H6A—C6—H6B108.3C13—C14—H14120.4
C3—C7—C8109.6 (1)C14—C15—C16121.3 (2)
C3—C7—H7A109.7C14—C15—H15119.4
C8—C7—H7A109.7C16—C15—H15119.4
C3—C7—H7B109.7C15—C16—C11120.1 (2)
C8—C7—H7B109.7C15—C16—H16120.0
H7A—C7—H7B108.2C11—C16—H16120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.172.988 (2)160
C10—H10A···O1i0.972.353.305 (2)168
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H21NOS
Mr275.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.6614 (2), 14.5582 (3), 9.0632 (2)
β (°) 109.777 (1)
V3)1447.90 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.12 × 0.08 × 0.06
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
14147, 3563, 2623
Rint0.030
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.126, 1.07
No. of reflections3563
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.30

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.172.988 (2)159.5
C10—H10A···O1i0.972.353.305 (2)167.7
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

MD and AJB thank KAIST for financial support.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J. 11, 5269–5278.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHan, Z., Krishnamurthy, D., Pflum, D., Glover, P., Wald, S. A. & Senanayake, C. H. (2002). Org. Lett. 4, 4025–1428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385–1392.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSchuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516–1520.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSchulze, B., Taubert, K., Siegemund, A., Freysoldt, T. H. E. & Sieler, J. (2005). Z. Naturforsch. Teil B, 60, 41–47.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStretter, H., Krause, M. & Last, W.-D. (1969). Chem. Ber. 102, 3357–3363.  Google Scholar
First citationWeix, D. J. & Ellman, J. A. (2003). Org. Lett. 5, 1317–1320.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds