organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

6-Methyl-N-(2-methyl­phen­yl)-3-phenyl-1,6-di­hydro-1,2,4,5-tetra­zine-1-carbox­amide

aCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
*Correspondence e-mail: huyang@mail.hz.zj.cn

(Received 18 June 2008; accepted 2 July 2008; online 9 July 2008)

In the title compound, C17H16N5O, the central tetra­zine ring adopts an unsymmetrical boat conformation with the two C atoms as flagpoles. This compound can be considered as having homoaromaticity. The crystal structure is stabilized by inter­molecular C—H⋯O inter­actions between a benzene H atom and the carbonyl O atom.

Related literature

For related literature, see: Hu et al. (2004[Hu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177-1181.], 2005[Hu, W. X., Shi, H. B., Yuan, Q. & &Sun, Y. Q. (2005). J. Chem. Res. pp. 291-293.]); Jennison et al. (1986[Jennison, C. P. R., Mackay, D., Watson, K. N. & Taylor, N. J. (1986). J. Org. Chem. 51, 3043-3051.]); Sauer (1996[Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901-955. Oxford: Elsevier.]); Stam et al. (1982[Stam, C. H., Counotte-Potman, A. D. & Van der Plas, H. C. (1982). J. Org. Chem. 47, 2856-2858.]); Xu et al. (2006[Xu, F., Hu, W.-X., Zhou, W. & Xia, C.-N. (2006). Acta Cryst. E62, o2875-o2876.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16N5O

  • Mr = 306.35

  • Monoclinic, P 21 /c

  • a = 13.941 (6) Å

  • b = 5.675 (2) Å

  • c = 20.614 (8) Å

  • β = 102.055 (6)°

  • V = 1594.9 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 291 (2) K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.995

  • 6815 measured reflections

  • 3116 independent reflections

  • 1882 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.193

  • S = 0.94

  • 3116 reflections

  • 226 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Oi 0.93 2.56 3.385 (3) 148
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,2,4,5-Tetrazine derivatives have high potential for biological activity, possessing a wide spectrum of antiviral and antitumor properties. They have been widely used in pesticides and herbicides (Sauer, 1996). Dihydro-1,2,4,5-tetrazine has four isomers, namely 1,2-, 1,4-, 1,6-, and 3,6-dihydro-1,2,4,5-tetrazines. The 1,6-dihydro structures (Stam et al., 1982; Jennison et al., 1986) were found, by X-ray diffraction, to be homoaromatic. In continuation of our work on the structure–activity relationship of 1,6-dihydro-1,2,4,5-tetrazine derivatives (Hu et al., 2004, 2005), we report the crystal structure of the title compound (I) (Fig. 1).

In the tetrazine ring, atoms N1, N2, N3 and N4 are coplanar, while atoms C1 and C2 deviate from the plane by 0.597 (3) and 0.225 (3)°, respectively. The N1/C1/N4 and N2/C3/N3 planes make dihedral angles of 42.3 (2)° and 19.7 (2)°, respectively, with the N1–N4 plane, i.e. the tetrazine ring adopts an unsymmetrical boat conformation. The C3–C8 benzene ring make dihedral angles of 13.2 (1)°, with the N1–N4 plane. N1 is almost sp2 hybridized due to the angles around it add up to 359.6 (2)°. In keeping with similar situations in 3-phenyl-6-ethyl-1,6-dihydro-1,2,4,5-tetrazine (Stam et al., 1982), 3-(p-chlorophenyl)-6-methyl-1,6-dihydro-1,2,4,5-tetrazine (Xu et al., 2006) and 1-acetyl-3,6-dimethyl-1,2,4,5-tetrazine (Jennison et al., 1986), it can be considered that the molecule is homoaromatic.

The Fig. 2 shows that intramolecular C—H···O hydrogen bonds form a pseudo-five-membered ring. The crystal packing (Fig. 2) is stabilized by intermolecular C—H···O interactions between a benzene H atom and the O atom of carbonyl group, with a C6—H6···Oi separation of 3.385 (3) Å (Table 1; symmetry code as in Fig. 2).

Related literature top

For related literature, see: Hu et al. (2004, 2005); Jennison et al. (1986); Sauer (1996); Stam et al. (1982); Xu et al. (2006).

Experimental top

6-methyl-3-phenyl-1,6-dihydro-1,2,4,5-tetrazine (3.0 mmol), chloroform (10 ml) and pyridine (0.25 ml, 3.1 mmol) were mixed. 1-isocyanato-2-methylbenzene (3.0 mmol) in chloroform (10 ml) was added dropwise with stirring at room temperature. After the starting 1,6-dihydro-1,2,4,5-tetrazine was completely consumed (the reaction courses was monitored by TLC, dichloromethane system), evaporation of the chloroform, crude N-(o-methylphenyl) 3-phenyl-6-methyl-1,6-dihydro-1,2,4,5-tetrazine-1-carboxamide was obtained and purified by preparative thin-layer chromatography over silica gel PF254 (2 mm) (dichloromethane:petroleum ether = 1:1). The solution of the compound in anhydrous ethanol was concentrated gradually at room temperature to afford single crystals, which was suitable for X-ray diffraction. m.p. 378–380 K. Spectroscopic analysis: 1H NMR (CDCl3) δ p.p.m.: 8.64 (s, 1H), 8.14–8.16 (m, 2H, ArH), 7.92 (d, 1H, J = 8.0 Hz), 7.52–7.55 (m, 3H, ArH), 7.22 (m, 2H, ArH), 7.08 (t, 1H, J = 7.2 Hz), 6.91 (q, 1H, J=6.4 Hz), 2.34 (s, 3H), 1.09 (d, 3H, J = 6.8 Hz).

Refinement top

The positions of H atoms bound to C17 and N5 were obtained from difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions with C—H = 0.93 (aromatic) and 0.96 Å (methyl), and refined in riding model, with Uiso(H) = 1.5Ueq(C)for methyl and 1.2Ueq for aromatic H atoms.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. C—H···O interaction (dotted line) in the title compound. [Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) x, -y+3/2, z+1/2.]
6-Methyl-N-(2-methylphenyl)-3-phenyl-1,6-dihydro-1,2,4,5-tetrazine-1-carboxamide top
Crystal data top
C17H16N5OF(000) = 644
Mr = 306.35Dx = 1.276 Mg m3
Monoclinic, P21/cMelting point = 378–380 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.941 (6) ÅCell parameters from 742 reflections
b = 5.675 (2) Åθ = 3.2–24.8°
c = 20.614 (8) ŵ = 0.08 mm1
β = 102.055 (6)°T = 291 K
V = 1594.9 (11) Å3Prism, red
Z = 40.12 × 0.10 × 0.06 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3116 independent reflections
Radiation source: fine-focus sealed tube1882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 1.5°
ϕ and ω scansh = 178
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 67
Tmin = 0.980, Tmax = 0.995l = 2525
6815 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.193 w = 1/[σ2(Fo2) + (0.1133P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
3116 reflectionsΔρmax = 0.54 e Å3
226 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.031 (5)
Crystal data top
C17H16N5OV = 1594.9 (11) Å3
Mr = 306.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.941 (6) ŵ = 0.08 mm1
b = 5.675 (2) ÅT = 291 K
c = 20.614 (8) Å0.12 × 0.10 × 0.06 mm
β = 102.055 (6)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3116 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1882 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.995Rint = 0.084
6815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.193H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.54 e Å3
3116 reflectionsΔρmin = 0.31 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.79549 (13)0.2358 (3)0.73526 (8)0.0685 (5)
N10.82379 (14)0.4541 (3)0.64939 (9)0.0552 (5)
N20.79315 (13)0.5181 (3)0.58485 (9)0.0522 (5)
N30.88534 (17)0.8632 (4)0.61618 (12)0.0685 (6)
N40.91853 (17)0.7948 (4)0.67409 (12)0.0724 (6)
N50.68918 (15)0.2115 (4)0.63448 (10)0.0598 (6)
H5N0.6759 (17)0.282 (4)0.5967 (12)0.054 (6)*
C10.91906 (18)0.5354 (4)0.68427 (11)0.0587 (6)
C20.83633 (17)0.7032 (4)0.56768 (11)0.0526 (6)
C30.82173 (17)0.7755 (4)0.49788 (12)0.0542 (6)
C40.77371 (19)0.6256 (5)0.44798 (12)0.0644 (7)
H40.74900.48240.45920.077*
C50.7624 (2)0.6873 (6)0.38197 (14)0.0813 (9)
H50.73070.58530.34910.098*
C60.7975 (2)0.8971 (6)0.36496 (16)0.0825 (9)
H60.78890.93920.32050.099*
C70.8452 (3)1.0452 (6)0.41287 (18)0.0876 (10)
H70.87011.18700.40090.105*
C80.8571 (2)0.9862 (5)0.47985 (15)0.0788 (8)
H80.88891.08970.51230.095*
C90.76906 (18)0.2904 (4)0.67787 (11)0.0535 (6)
C100.61865 (18)0.0506 (4)0.64801 (11)0.0559 (6)
C110.6437 (2)0.1223 (5)0.69669 (13)0.0724 (8)
H110.70770.13290.72100.087*
C120.5740 (3)0.2762 (6)0.70856 (15)0.0883 (10)
H120.59050.39100.74120.106*
C130.4807 (3)0.2619 (6)0.67292 (18)0.0928 (11)
H130.43300.36460.68170.111*
C140.4564 (2)0.0944 (6)0.62345 (16)0.0817 (9)
H140.39260.08910.59870.098*
C150.52429 (19)0.0652 (4)0.60974 (12)0.0601 (7)
C161.00241 (18)0.4238 (5)0.65920 (13)0.0658 (7)
H16A1.00130.25640.66560.099*
H16B1.06360.48650.68320.099*
H16C0.99550.45750.61280.099*
C170.4969 (3)0.2482 (6)0.55605 (17)0.0790 (8)
H17A0.431 (3)0.232 (5)0.5290 (16)0.102 (10)*
H17B0.543 (2)0.223 (5)0.5212 (15)0.092 (9)*
H17C0.511 (3)0.408 (7)0.5726 (16)0.107 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0755 (12)0.0808 (13)0.0475 (10)0.0050 (9)0.0090 (8)0.0014 (7)
N10.0491 (11)0.0653 (12)0.0486 (10)0.0056 (10)0.0039 (8)0.0001 (8)
N20.0469 (11)0.0556 (11)0.0529 (11)0.0018 (9)0.0077 (8)0.0026 (8)
N30.0682 (14)0.0511 (12)0.0823 (15)0.0009 (10)0.0067 (12)0.0101 (10)
N40.0740 (15)0.0636 (14)0.0742 (15)0.0012 (11)0.0030 (12)0.0181 (11)
N50.0537 (12)0.0737 (14)0.0501 (12)0.0109 (10)0.0064 (10)0.0102 (9)
C10.0521 (15)0.0578 (14)0.0616 (14)0.0068 (12)0.0015 (11)0.0095 (10)
C20.0488 (13)0.0424 (12)0.0658 (14)0.0002 (11)0.0098 (11)0.0017 (9)
C30.0427 (13)0.0485 (13)0.0722 (15)0.0022 (10)0.0137 (11)0.0085 (10)
C40.0610 (16)0.0681 (16)0.0637 (15)0.0068 (13)0.0123 (12)0.0116 (11)
C50.0763 (19)0.101 (2)0.0649 (16)0.0060 (17)0.0117 (14)0.0133 (14)
C60.0736 (19)0.095 (2)0.0832 (19)0.0109 (18)0.0271 (16)0.0321 (17)
C70.094 (2)0.0653 (19)0.115 (3)0.0012 (17)0.047 (2)0.0308 (17)
C80.084 (2)0.0583 (17)0.098 (2)0.0070 (15)0.0271 (16)0.0097 (14)
C90.0520 (14)0.0604 (14)0.0484 (13)0.0014 (11)0.0111 (11)0.0033 (10)
C100.0597 (15)0.0570 (14)0.0548 (13)0.0092 (12)0.0210 (11)0.0027 (10)
C110.0846 (19)0.0703 (17)0.0646 (15)0.0100 (15)0.0209 (14)0.0082 (12)
C120.119 (3)0.080 (2)0.0732 (18)0.028 (2)0.035 (2)0.0027 (14)
C130.106 (3)0.089 (2)0.097 (2)0.042 (2)0.053 (2)0.0174 (18)
C140.0644 (18)0.090 (2)0.096 (2)0.0193 (16)0.0277 (16)0.0261 (17)
C150.0571 (16)0.0621 (15)0.0645 (14)0.0049 (12)0.0205 (12)0.0115 (11)
C160.0513 (15)0.0635 (16)0.0779 (16)0.0031 (12)0.0029 (12)0.0007 (11)
C170.064 (2)0.078 (2)0.087 (2)0.0031 (17)0.0032 (17)0.0037 (16)
Geometric parameters (Å, º) top
O—C91.204 (3)C7—C81.397 (4)
N1—N21.359 (3)C7—H70.9300
N1—C91.406 (3)C8—H80.9300
N1—C11.447 (3)C10—C151.388 (4)
N2—C21.296 (3)C10—C111.395 (4)
N3—N41.249 (3)C11—C121.366 (4)
N3—C21.416 (3)C11—H110.9300
N4—C11.487 (3)C12—C131.356 (5)
N5—C91.351 (3)C12—H120.9300
N5—C101.412 (3)C13—C141.383 (5)
N5—H5N0.86 (2)C13—H130.9300
C1—C161.506 (3)C14—C151.381 (4)
C2—C31.469 (3)C14—H140.9300
C3—C81.374 (4)C15—C171.508 (4)
C3—C41.394 (4)C16—H16A0.9600
C4—C51.382 (4)C16—H16B0.9600
C4—H40.9300C16—H16C0.9600
C5—C61.361 (4)C17—H17A0.98 (4)
C5—H50.9300C17—H17B1.07 (3)
C6—C71.360 (5)C17—H17C0.97 (4)
C6—H60.9300
N2—N1—C9119.9 (2)O—C9—N5127.3 (2)
N2—N1—C1118.0 (2)O—C9—N1119.9 (2)
C9—N1—C1121.7 (2)N5—C9—N1112.8 (2)
C2—N2—N1114.5 (2)C15—C10—C11121.1 (2)
N4—N3—C2120.2 (2)C15—C10—N5117.7 (2)
N3—N4—C1115.6 (2)C11—C10—N5121.1 (2)
C9—N5—C10126.5 (2)C12—C11—C10119.9 (3)
C9—N5—H5N115.8 (16)C12—C11—H11120.1
C10—N5—H5N117.0 (16)C10—C11—H11120.1
N1—C1—N4105.6 (2)C13—C12—C11120.2 (3)
N1—C1—C16112.9 (2)C13—C12—H12119.9
N4—C1—C16110.4 (2)C11—C12—H12119.9
N2—C2—N3120.7 (2)C12—C13—C14120.0 (3)
N2—C2—C3121.1 (2)C12—C13—H13120.0
N3—C2—C3117.4 (2)C14—C13—H13120.0
C8—C3—C4118.4 (2)C15—C14—C13122.0 (3)
C8—C3—C2121.6 (2)C15—C14—H14119.0
C4—C3—C2120.0 (2)C13—C14—H14119.0
C5—C4—C3120.7 (2)C14—C15—C10116.9 (2)
C5—C4—H4119.7C14—C15—C17121.5 (3)
C3—C4—H4119.7C10—C15—C17121.5 (2)
C6—C5—C4120.2 (3)C1—C16—H16A109.5
C6—C5—H5119.9C1—C16—H16B109.5
C4—C5—H5119.9H16A—C16—H16B109.5
C7—C6—C5120.1 (3)C1—C16—H16C109.5
C7—C6—H6120.0H16A—C16—H16C109.5
C5—C6—H6120.0H16B—C16—H16C109.5
C6—C7—C8120.6 (3)C15—C17—H17A114.5 (19)
C6—C7—H7119.7C15—C17—H17B107.6 (16)
C8—C7—H7119.7H17A—C17—H17B104 (2)
C3—C8—C7120.1 (3)C15—C17—H17C112.6 (19)
C3—C8—H8120.0H17A—C17—H17C113 (3)
C7—C8—H8120.0H17B—C17—H17C105 (3)
C9—N1—N2—C2166.3 (2)C4—C3—C8—C70.5 (4)
C1—N1—N2—C221.5 (3)C2—C3—C8—C7177.5 (3)
C2—N3—N4—C110.6 (3)C6—C7—C8—C31.0 (5)
N2—N1—C1—N452.3 (3)C10—N5—C9—O1.3 (4)
C9—N1—C1—N4135.5 (2)C10—N5—C9—N1178.6 (2)
N2—N1—C1—C1668.4 (3)N2—N1—C9—O179.1 (2)
C9—N1—C1—C16103.7 (2)C1—N1—C9—O8.9 (3)
N3—N4—C1—N145.4 (3)N2—N1—C9—N50.8 (3)
N3—N4—C1—C1677.0 (3)C1—N1—C9—N5171.2 (2)
N1—N2—C2—N319.4 (3)C9—N5—C10—C15152.7 (2)
N1—N2—C2—C3171.32 (19)C9—N5—C10—C1129.4 (4)
N4—N3—C2—N225.8 (3)C15—C10—C11—C122.0 (4)
N4—N3—C2—C3164.6 (2)N5—C10—C11—C12179.8 (2)
N2—C2—C3—C8171.8 (2)C10—C11—C12—C130.3 (4)
N3—C2—C3—C82.2 (3)C11—C12—C13—C141.4 (5)
N2—C2—C3—C410.2 (4)C12—C13—C14—C151.6 (5)
N3—C2—C3—C4179.8 (2)C13—C14—C15—C100.0 (4)
C8—C3—C4—C50.3 (4)C13—C14—C15—C17179.5 (3)
C2—C3—C4—C5177.7 (2)C11—C10—C15—C141.8 (3)
C3—C4—C5—C60.5 (4)N5—C10—C15—C14179.7 (2)
C4—C5—C6—C71.0 (5)C11—C10—C15—C17178.7 (3)
C5—C6—C7—C81.2 (5)N5—C10—C15—C170.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Oi0.932.563.385 (3)148
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H16N5O
Mr306.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)13.941 (6), 5.675 (2), 20.614 (8)
β (°) 102.055 (6)
V3)1594.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.12 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
6815, 3116, 1882
Rint0.084
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.193, 0.94
No. of reflections3116
No. of parameters226
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.31

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···Oi0.932.563.385 (3)147.7
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The authors are very grateful to the National Natural and Scientific Foundation (grant No. 20272053) for financial support.

References

First citationBruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, W. X., Rao, G. W. & Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 1177–1181.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, W. X., Shi, H. B., Yuan, Q. & &Sun, Y. Q. (2005). J. Chem. Res. pp. 291–293.  Google Scholar
First citationJennison, C. P. R., Mackay, D., Watson, K. N. & Taylor, N. J. (1986). J. Org. Chem. 51, 3043–3051.  CSD CrossRef CAS Web of Science Google Scholar
First citationSauer, J. (1996). Comprehensive Heterocyclic Chemistry, 2nd ed., edited by A. J. Boulton, Vol. 6, pp. 901–955. Oxford: Elsevier.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStam, C. H., Counotte-Potman, A. D. & Van der Plas, H. C. (1982). J. Org. Chem. 47, 2856–2858.  CSD CrossRef CAS Google Scholar
First citationXu, F., Hu, W.-X., Zhou, W. & Xia, C.-N. (2006). Acta Cryst. E62, o2875–o2876.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds