inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Lithium manganese(II) di­aqua­boro­phosphate monohydrate

aDepartment of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian Province, People's Republic of China, and bDepartment of Chemistry and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, People's Republic of China
*Correspondence e-mail: jxmi@xmu.edu.cn

(Received 23 May 2008; accepted 23 June 2008; online 5 July 2008)

The title compound, LiMn(H2O)2[BP2O8]·H2O, is built up of an open framework of helical borophosphate ribbons inter­connected by MnO4(H2O)2 octa­hedra, forming one-dimensional channels along [001] occupied by Li+ cations and disordered H2O mol­ecules (site occupancy 0.5). The Li cations reside in two partially occupied sites [occupancies = 0.42 (3) and 0.289 (13)] near the helices.

Related literature

For related structures, see: Boy & Kniep (2001a[Boy, I. & Kniep, R. (2001a). Z. Kristallogr. New Cryst. Struct. 216, 7-8.],b[Boy, I. & Kniep, R. (2001b). Z. Kristallogr. New Cryst. Struct. 216, 9-10.]) for LiCu(H2O)2[BP2O8]·(H2O) and LiZn(H2O)2[BP2O8]·H2O; Ge et al. (2003[Ge, M.-H., Mi, J.-X., Huang, Y.-X., Zhao, J.-T. & Kniep, R. (2003). Z. Kristallogr. New Cryst. Struct. 218, 273-274.]) for LiCd(H2O)2[BP2O8]·H2O; Lin et al. (2008[Lin, J.-R., Huang, Y.-X., Wu, Y.-H. & Zhou, Y. (2008). Acta Cryst. E64, i39-i40.]) for LiMg(H2O)2[BP2O8]·H2O. For related literature, see: Ewald et al. (2006[Ewald, B., Prots, Yu., Kudla, C., Grünner, D., Cardoso-Gil, R. & Kniep, R. (2006). Chem. Mater. 18, 673-679.]); Kniep et al. (1997[Kniep, R., Will, H.-G., Boy, I. & Röhr, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 1013-1014.]).

Experimental

Crystal data
  • LiMn(H2O)2[BP2O8]·H2O

  • Mr = 316.68

  • Hexagonal, P 65 22

  • a = 9.5765 (4) Å

  • c = 15.857 (1) Å

  • V = 1259.4 (1) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 295 (2) K

  • 0.16 × 0.12 × 0.12 mm

Data collection
  • Rigaku AFC-7 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.740, Tmax = 0.795

  • 9731 measured reflections

  • 1230 independent reflections

  • 1223 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.097

  • S = 1.19

  • 1230 reflections

  • 85 parameters

  • 1 restraint

  • Only H-atom coordinates refined

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 443 Friedel pairs

  • Flack parameter: −0.01 (4)

Table 1
Selected geometric parameters (Å, °)

Mn1—O4i 2.133 (3)
Mn1—O3 2.139 (3)
Mn1—O5 2.311 (4)
P1—O3 1.504 (3)
P1—O4 1.510 (3)
P1—O1ii 1.553 (3)
P1—O2iii 1.560 (2)
O5—H1 0.82 (7)
O5—H2 0.81 (2)
B1—O1iv 1.463 (4)
B1—O2ii 1.470 (4)
Li1—O5ii 2.111 (4)
Li1—O3ii 2.112 (17)
Li2—O6v 1.95 (3)
Li2—O6vi 1.98 (3)
Li2—O4v 2.11 (3)
Li2—O5vii 2.18 (3)
B1viii—O1—P1ii 129.4 (2)
B1—O2—P1ix 131.1 (2)
P1—O3—Mn1 128.38 (17)
Symmetry codes: (i) [y, -x+y+1, z+{\script{1\over 6}}]; (ii) [-y+1, -x+1, -z+{\script{1\over 6}}]; (iii) x-y, -y+1, -z; (iv) [-y+1, -x, -z+{\script{1\over 6}}]; (v) [-x+y+1, y, -z+{\script{1\over 2}}]; (vi) [y, x, -z+{\script{2\over 3}}]; (vii) [y, -x+y, z+{\script{1\over 6}}]; (viii) x-1, y, z; (ix) x-y+1, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯O4x 0.83 (7) 2.09 (7) 2.878 (5) 159.80
O5—H2⋯O2i 0.81 (4) 2.09 (5) 2.845 (5) 155.74
Symmetry codes: (i) [y, -x+y+1, z+{\script{1\over 6}}]; (x) [-x+y, y, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ATOMS (Dowty, 2004[Dowty, E. (2004). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A large family of compounds contains helical borophosphate anions 1[BP2O8]3- with various combinations of metal cations (MIMII, M0.5IMII, MIII) (Kniep et al., 1997; Ewald et al., 2006). To date, the only Li-containing members are LiMII(H2O)2[BP2O8].H2O (MII = Cu, Zn, Cd, Mg) (Boy & Kniep, 2001a, 2001b; Ge et al., 2003; Lin et al., 2008). The structure of LiMn(H2O)2[BP2O8].H2O is reported here.

The borophosphate helices, built up of four-membered rings of alternating BO4 and PO4 tetrahedra, extend along the 65 screw axis (Fig. 1 and 2). These helices are interconnected by Jahn-Teller-distorted Mn2+-centred octahedra, with four oxygen atoms (O3, O4) from PO4 groups and two (O5) from water molecules at the vertices (Fig. 3). Unlike the compounds containing Cu and Zn (Boy & Kniep, 2001a, 2001b) but similar to those containing Cd and Mg (Ge et al., 2003; Lin et al., 2008), there are two distinct Li sites: Li1 is close to the outer wall of the borophosphate helices and Li2 is situated at the free loops (inner wall) of the helices. The sum of occupancies of these Li sites refines to almost unity, as required to maintain charge neutrality in the compound.

Related literature top

For related structures, see: Boy & Kniep (2001a,b) for LiCu(H2O)2[BP2O8].(H2O) and LiZn(H2O)2[BP2O8].H2O; Ge et al. (2003) for LiCd(H2O)2[BP2O8].H2O; Lin et al. (2008) for LiMg(H2O)2[BP2O8].H2O. For related literature, see: Ewald et al. (2006); Kniep et al. (1997).

Experimental top

LiMn(H2O)2[BP2O8].H2O was obtained in the presence of boric acid as a flux. A mixture of 0.1149 g MnCO3, 1.484 g H3BO3, and 0.6235 g LiH2PO4 was ground to a homogeneous powder, which was transferred to a teflon autoclave with 10 ml inline (degree of filling 10%) where it was heated at 443 K for four days.

Refinement top

The hydrogen atoms connected to O5 were located from difference Fourier maps with displacement parameters fixed as 1.2*U(O5), whereas those connected to O6 belonging to the disordered water molecules were not located. The sum of the occupancies of Li sites was restrained to maintain charge neutrality within the entire compound. The occupancy of the O6 site associated with the disordered water molecules was fixed at 0.5.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005) and ATOMS (Dowty, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Linkage of borophosphate helices in LiMn(H2O)2[BP2O8].H2O through MnO4(H2O)2 octahedra (BO4, green tetrahedra; PO4, orange tetrahedra; MnO6, violet octahedra; Li, black spheres; H2O, red spheres).
[Figure 2] Fig. 2. Section of LiMn(H2O)2[BP2O8].H2O viewed along the c axis (colour scheme as in Fig. 1).
[Figure 3] Fig. 3. Coordination environment of Mn, B, and P atoms, with displacement ellipsoids drawn at the 50% probability level (symmetry codes: (i) -x+y, y, 1/2-z; (ii) 1-x, 1-x+y, 1/3-z; (iii) y,1-x+y, 1/6+z; (iv) 1-y,1-x, 1/6-z; (v) x-y, x,-1/6+z; (vi) 1+x-y, 1-y,-z, (vii) x-y, 1-y,-z; (viii) 1+x-y,1+x,-1/6+z).
Lithium manganese diaquaborophosphate monohydrate top
Crystal data top
LiMn(H2O)2[BP2O8]·H2ODx = 2.505 Mg m3
Mr = 316.68Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6522Cell parameters from 6263 reflections
Hall symbol: P 65 2 (0 0 1)θ = 2.5–33.2°
a = 9.5765 (4) ŵ = 2.01 mm1
c = 15.857 (1) ÅT = 295 K
V = 1259.4 (1) Å3Hexagonal bipyramid, pale pink
Z = 60.16 × 0.12 × 0.12 mm
F(000) = 942
Data collection top
Rigaku AFC-7 CCD
diffractometer
1230 independent reflections
Radiation source: fine-focus sealed tube1223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 14.6306 pixels mm-1θmax = 30.0°, θmin = 2.5°
thin–slice Δϕ=0.6 & Δω=0.6 scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1312
Tmin = 0.740, Tmax = 0.795l = 1922
9731 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullOnly H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.008P)2 + 5.1269P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max < 0.001
S = 1.19Δρmax = 0.62 e Å3
1230 reflectionsΔρmin = 0.44 e Å3
85 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0054 (19)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 443 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (4)
Crystal data top
LiMn(H2O)2[BP2O8]·H2OZ = 6
Mr = 316.68Mo Kα radiation
Hexagonal, P6522µ = 2.01 mm1
a = 9.5765 (4) ÅT = 295 K
c = 15.857 (1) Å0.16 × 0.12 × 0.12 mm
V = 1259.4 (1) Å3
Data collection top
Rigaku AFC-7 CCD
diffractometer
1230 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1223 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.795Rint = 0.032
9731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040Only H-atom coordinates refined
wR(F2) = 0.097Δρmax = 0.62 e Å3
S = 1.19Δρmin = 0.44 e Å3
1230 reflectionsAbsolute structure: Flack (1983), 443 Friedel pairs
85 parametersAbsolute structure parameter: 0.01 (4)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.44888 (4)0.89775 (9)0.25000.0163 (2)
P10.61636 (10)0.83327 (10)0.08453 (6)0.0134 (2)
O10.0204 (3)0.2129 (3)0.06593 (16)0.0181 (5)
O20.7681 (3)0.1804 (3)0.01267 (14)0.0158 (5)
O30.4860 (3)0.8589 (4)0.12112 (17)0.0227 (6)
O40.6237 (4)0.6903 (3)0.11938 (17)0.0228 (6)
O50.1884 (4)0.7081 (4)0.2127 (2)0.0340 (8)
O60.9000 (19)0.8166 (12)0.2717 (7)0.079 (3)*0.50
B10.8493 (3)0.1507 (3)0.08330.0140 (9)
Li10.2428 (18)0.7572 (18)0.08330.034 (4)0.42 (3)
Li20.899 (4)0.763 (3)0.3479 (16)0.034 (4)0.289 (13)
H10.133 (8)0.683 (7)0.256 (4)0.041*
H20.179 (7)0.620 (4)0.218 (4)0.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0170 (3)0.0165 (4)0.0153 (3)0.00826 (18)0.0028 (2)0.000
P10.0153 (4)0.0131 (4)0.0113 (3)0.0068 (3)0.0011 (3)0.0005 (3)
O10.0139 (11)0.0196 (12)0.0200 (12)0.0077 (10)0.0012 (9)0.0060 (9)
O20.0195 (12)0.0185 (11)0.0106 (9)0.0104 (10)0.0029 (9)0.0024 (8)
O30.0222 (14)0.0306 (15)0.0177 (12)0.0151 (12)0.0028 (10)0.0046 (11)
O40.0348 (16)0.0150 (12)0.0177 (11)0.0117 (11)0.0008 (12)0.0022 (10)
O50.0280 (17)0.0233 (15)0.0393 (17)0.0041 (13)0.0118 (14)0.0065 (14)
B10.0157 (17)0.0157 (17)0.011 (2)0.0083 (19)0.0013 (16)0.0013 (16)
Li10.036 (7)0.036 (7)0.023 (8)0.012 (8)0.003 (6)0.003 (6)
Li20.036 (7)0.036 (7)0.023 (8)0.012 (8)0.003 (6)0.003 (6)
Geometric parameters (Å, º) top
Mn1—O4i2.133 (3)O5—H10.82 (7)
Mn1—O4ii2.133 (3)O5—H20.81 (2)
Mn1—O32.139 (3)O6—O6ix0.71 (2)
Mn1—O3iii2.139 (3)O6—Li21.31 (3)
Mn1—O52.311 (4)O6—Li2ix1.95 (3)
Mn1—O5iii2.311 (3)O6—Li2xii1.98 (3)
P1—O31.504 (3)O6—Li2x2.45 (3)
P1—O41.510 (3)O6—Li1xiii2.53 (3)
P1—O1iv1.553 (3)B1—O1xiv1.463 (4)
P1—O2v1.560 (2)B1—O1xv1.463 (4)
O1—B1vi1.463 (4)B1—O2iv1.470 (4)
O1—P1iv1.553 (3)Li1—O5iv2.111 (4)
O1—Li2vii2.65 (3)Li1—O3iv2.112 (17)
O2—B11.470 (4)Li2—O6ix1.95 (3)
O2—P1viii1.560 (2)Li2—O6xii1.98 (3)
O3—Li12.112 (17)Li2—O4ix2.11 (3)
O4—Li2ix2.11 (3)Li2—O5xiii2.18 (3)
O4—Mn1x2.133 (3)Li2—Li2xii2.30 (6)
O5—Li12.111 (4)Li2—O6i2.45 (3)
O5—Li2xi2.18 (3)
O4i—Mn1—O4ii97.89 (17)O2—B1—O2iv102.6 (4)
O4i—Mn1—O3100.17 (11)O5iv—Li1—O5177.6 (17)
O4ii—Mn1—O391.22 (11)O5iv—Li1—O3iv85.4 (4)
O4i—Mn1—O3iii91.22 (11)O5—Li1—O3iv96.0 (5)
O4ii—Mn1—O3iii100.17 (11)O5iv—Li1—O396.0 (5)
O3—Mn1—O3iii162.68 (17)O5—Li1—O385.4 (4)
O4i—Mn1—O5178.14 (13)O3iv—Li1—O3112.6 (14)
O4ii—Mn1—O583.95 (13)O5iv—Li1—O6ii80.8 (8)
O3—Mn1—O580.01 (12)O5—Li1—O6ii96.8 (9)
O3iii—Mn1—O588.19 (12)O3iv—Li1—O6ii122.4 (7)
O4i—Mn1—O5iii83.95 (13)O3—Li1—O6ii124.3 (8)
O4ii—Mn1—O5iii178.14 (14)O5iv—Li1—O6xi96.8 (9)
O3—Mn1—O5iii88.19 (12)O5—Li1—O6xi80.8 (8)
O3iii—Mn1—O5iii80.01 (12)O3iv—Li1—O6xi124.3 (8)
O5—Mn1—O5iii94.2 (2)O3—Li1—O6xi122.4 (7)
O3—P1—O4115.17 (17)O6ii—Li1—O6xi16.0 (5)
O3—P1—O1iv111.97 (16)O6—Li2—O6ix10.8 (10)
O4—P1—O1iv104.62 (16)O6—Li2—O6xii90.8 (17)
O3—P1—O2v105.62 (15)O6ix—Li2—O6xii101.7 (15)
O4—P1—O2v111.81 (15)O6—Li2—O4ix119.9 (19)
O1iv—P1—O2v107.54 (14)O6ix—Li2—O4ix110.3 (14)
B1vi—O1—P1iv129.4 (2)O6xii—Li2—O4ix138.2 (14)
B1—O2—P1viii131.1 (2)O6—Li2—O5xiii117.8 (18)
P1—O3—Mn1128.38 (17)O6ix—Li2—O5xiii114.8 (14)
Li1—O5—H1157 (4)O6xii—Li2—O5xiii102.8 (13)
Li2xi—O5—H193 (4)O4ix—Li2—O5xiii87.8 (11)
Mn1—O5—H1107 (4)O6—Li2—O6i104.2 (18)
Li1—O5—H2103 (4)O6ix—Li2—O6i115.0 (14)
Li2xi—O5—H2162 (4)O6xii—Li2—O6i13.8 (7)
Mn1—O5—H2107 (4)O4ix—Li2—O6i125.5 (12)
H1—O5—H284 (5)O5xiii—Li2—O6i99.1 (11)
Li2—O6—Li2ix146 (2)O6—Li2—O1xvi100.4 (16)
O1xiv—B1—O1xv103.7 (4)O6ix—Li2—O1xvi100.1 (12)
O1xiv—B1—O2113.70 (14)O6xii—Li2—O1xvi89.1 (11)
O1xv—B1—O2111.75 (14)O4ix—Li2—O1xvi59.9 (8)
O1xiv—B1—O2iv111.75 (14)O5xiii—Li2—O1xvi139.4 (13)
O1xv—B1—O2iv113.70 (14)O6i—Li2—O1xvi83.4 (9)
Symmetry codes: (i) y, x+y+1, z+1/6; (ii) x+1, x+y+1, z+1/3; (iii) x+y, y, z+1/2; (iv) y+1, x+1, z+1/6; (v) xy, y+1, z; (vi) x1, y, z; (vii) y+1, xy, z1/3; (viii) xy+1, y+1, z; (ix) x+y+1, y, z+1/2; (x) xy+1, x, z1/6; (xi) xy, x, z1/6; (xii) y, x, z+2/3; (xiii) y, x+y, z+1/6; (xiv) y+1, x, z+1/6; (xv) x+1, y, z; (xvi) x+y+1, x+1, z+1/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O4iii0.83 (7)2.09 (7)2.878 (5)159.80
O5—H2···O2i0.81 (4)2.09 (5)2.845 (5)156
Symmetry codes: (i) y, x+y+1, z+1/6; (iii) x+y, y, z+1/2.

Experimental details

Crystal data
Chemical formulaLiMn(H2O)2[BP2O8]·H2O
Mr316.68
Crystal system, space groupHexagonal, P6522
Temperature (K)295
a, c (Å)9.5765 (4), 15.857 (1)
V3)1259.4 (1)
Z6
Radiation typeMo Kα
µ (mm1)2.01
Crystal size (mm)0.16 × 0.12 × 0.12
Data collection
DiffractometerRigaku AFC-7 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.740, 0.795
No. of measured, independent and
observed [I > 2σ(I)] reflections
9731, 1230, 1223
Rint0.032
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.19
No. of reflections1230
No. of parameters85
No. of restraints1
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.62, 0.44
Absolute structureFlack (1983), 443 Friedel pairs
Absolute structure parameter0.01 (4)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005) and ATOMS (Dowty, 2004).

Selected geometric parameters (Å, º) top
Mn1—O4i2.133 (3)B1—O1iv1.463 (4)
Mn1—O32.139 (3)B1—O2ii1.470 (4)
Mn1—O52.311 (4)Li1—O5ii2.111 (4)
P1—O31.504 (3)Li1—O3ii2.112 (17)
P1—O41.510 (3)Li2—O6v1.95 (3)
P1—O1ii1.553 (3)Li2—O6vi1.98 (3)
P1—O2iii1.560 (2)Li2—O4v2.11 (3)
O5—H10.82 (7)Li2—O5vii2.18 (3)
O5—H20.81 (2)
B1viii—O1—P1ii129.4 (2)P1—O3—Mn1128.38 (17)
B1—O2—P1ix131.1 (2)
Symmetry codes: (i) y, x+y+1, z+1/6; (ii) y+1, x+1, z+1/6; (iii) xy, y+1, z; (iv) y+1, x, z+1/6; (v) x+y+1, y, z+1/2; (vi) y, x, z+2/3; (vii) y, x+y, z+1/6; (viii) x1, y, z; (ix) xy+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O4x0.83 (7)2.09 (7)2.878 (5)159.80
O5—H2···O2i0.81 (4)2.09 (5)2.845 (5)155.74
Symmetry codes: (i) y, x+y+1, z+1/6; (x) x+y, y, z+1/2.
 

Acknowledgements

This project was supported by a fund from the National Natural Science Foundation of China (No. 40472027).

References

First citationBoy, I. & Kniep, R. (2001a). Z. Kristallogr. New Cryst. Struct. 216, 7–8.  CAS Google Scholar
First citationBoy, I. & Kniep, R. (2001b). Z. Kristallogr. New Cryst. Struct. 216, 9–10.  CAS Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDowty, E. (2004). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationEwald, B., Prots, Yu., Kudla, C., Grünner, D., Cardoso-Gil, R. & Kniep, R. (2006). Chem. Mater. 18, 673–679.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGe, M.-H., Mi, J.-X., Huang, Y.-X., Zhao, J.-T. & Kniep, R. (2003). Z. Kristallogr. New Cryst. Struct. 218, 273–274.  CAS Google Scholar
First citationKniep, R., Will, H.-G., Boy, I. & Röhr, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 1013–1014.  CrossRef CAS Web of Science Google Scholar
First citationLin, J.-R., Huang, Y.-X., Wu, Y.-H. & Zhou, Y. (2008). Acta Cryst. E64, i39–i40.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds