organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1430-o1431

5′,6-Di­chloro-1′,3′,3′-tri­methyl­spiro­[2H-1-benzo­pyran-2,2′-indoline]

aAdaptive Sensors Group, National Centre of Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and bSchool of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
*Correspondence e-mail: dermot.diamond@dcu.ie

(Received 20 May 2008; accepted 20 June 2008; online 9 July 2008)

In the crystal structure of the title compound, C19H17Cl2NO, the indoline and benzopyran ring systems are approximately perpendicular to each other. The indoline ring is in an envelope conformation with the spiro C atom as the flap. The N atom of the indoline ring forms a pyramidal environment, the sum of the angles at this atom being 352.46°.

Related literature

For related literature, see: Crano & Guglielmetti (1999[Crano & Guglielmetti (1999). Editors. Organic Photochromic and Thermochromic Compounds, Vol. 2. New York: Kluwer Academic.]); Kholmanskii & Dyumanev (1987[Kholmanskii, A. S. & Dyumanev, K. M. (1987). Russ. Chem. Rev. 56, 136-151.]); Tamai & Miyasaka (2000[Tamai, N. & Miyasaka, H. (2000). Chem. Rev. 100, 1875-1890.]); Krongauz et al. (2000[Krongauz, V., Berkovic, G. & Weiss, V. (2000). Chem. Rev. 100, 1741.]); Minkin (2004[Minkin, V. I. (2004). Chem. Rev. 104, 2751-2776.]); Crano et al. (1996[Crano, J. C., Flood, T., Knowles, D., Kumar, A. & Van Gemert, B. (1996). Pure Appl. Chem. 68, 1395-1398.]); Dvornikov et al. (1994[Dvornikov, A. S., Malkin, J. & Rentzepis, P. M. (1994). J. Phys. Chem. 98, 6746-6752.]); Tamai & Miyasaka (2000[Tamai, N. & Miyasaka, H. (2000). Chem. Rev. 100, 1875-1890.]); Yoshida & Morinaka (1994[Yoshida, T. & Morinaka, A. (1994). J. Photochem. Photobiol. 78, 179-183.]); Willner et al. (1993[Willner, I., Rubin, S., Shatzmiller, R. & Zor, T. (1993). J. Am. Chem. Soc. 115, 8690-8694.]); Byrne et al. (2006a[Byrne, R. J., Radu, A., Alhashimy, N., Slater, C., Yerazunis, W. S. & Diamond, D. (2006a). Proceedings of the European Coatings Conference `Smart Coatings', Berlin, Germany, pp. 65-76.],b[Byrne, R. J., Stitzel, S. E. & Diamond, D. (2006b). J. Mater. Chem. 16, 1332-1337.]); Raić-Malić et al. (2004[Raić-Malić, S., Tomašković, L., Mrvoš-Sermek, D., Prugovečki, B., Cetina, M., Grdiša, M., Krešimir, P., Mannschreck, A., Balzarini, J., Clercq, E. D. & Mintas, M. (2004). Bioorg. Med. Chem. 12, 1037-1045.]); Aldoshin & Atovmyan (1985[Aldoshin, S. M. & Atovmyan, L. O. (1985). Izv. Akad. Nauk SSSR Ser. Khim. p. 191.]); Aldoshin et al. (1987[Aldoshin, S. M., Atovmyan, L. O. & Kozina, O. A. (1987). Izv. Akad. Nauk SSSR Ser. Khim, 190..]); Mannschreeck et al. (1999[Mannschreeck, A., Lorenz, K. & Schinabeck, M. (1999). Organic Photochromic and Thermochromic Compounds, Vol. 2, edited by J. C. Crano & R. Guglielmetti, pp. 11-83. New York: Kluwer Academic.]). For the synthesis of the title compound, see: Martin et al. (1998[Martin, T. I., Jennings, C. A., Johnson, E. G. & Oliver, J. F. (1998). Patent AN 392 121.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17Cl2NO

  • Mr = 346.24

  • Monoclinic, P 21 /c

  • a = 8.3105 (7) Å

  • b = 18.2576 (16) Å

  • c = 11.1921 (10) Å

  • β = 104.770 (2)°

  • V = 1642.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 100 (2) K

  • 0.50 × 0.40 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.740, Tmax = 0.980

  • 16175 measured reflections

  • 4312 independent reflections

  • 3857 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.122

  • S = 1.05

  • 4312 reflections

  • 276 parameters

  • All H-atom parameters refined

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected interplanar angles (°) for the title compound

Atoms defining plane 1 Atoms defining plane 2 Interplanar angle
C2, C6, C8, N C11, C19, O 85.03 (4)
C3, C4, C8, N C8, C11, N 28.9 (1)
C1, C2, C3, C4, C5, C6 C3, C4, C8, N 2.4 (1)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Spiropyrans are a family of organic photochromic compounds (Carno & Guglielmetti, 1998). This family of compounds are well studied and documented (Kholmanskii & Dyumanev, 1987; Tamai & Miyasaka, 2000; Krongauz et al., 2000; Minkin, 2004) because they can be converted from a closed colourless form into a strongly coloured open form using UV irradiation. This tremendous characteristic of spiropyran compounds has been utilized by scientists for many applications such as light-sensitive eyewear (Crano et al., 1996), high density optical storage (Dvornikov et al.,1994), molecular switches (Tamai & Miyasaka, 2000, Minkin, 2004) and molecular devices (Yoshida & Morinaka, 1994; Willner et al., 1993). Our main interest was utilizing spiropyran derivatives as transducers in optical sensors, where selective binding to certain metal ions was achieved. The binding and release of such ions can be controlled by exposure to light of around 380 nm (open form) and 550 nm (close form) respectively (Byrne et al., 2006a; Byrne et al., 2006b). The title compound was envisaged as an intermediate in the synthesis of further spiropyran derivatives, whereby the chlorides groups can be replaced by substitution with variety of functional groups. The title compound consists of two molecular fragments: An indoline ring linked to a benzopyran ring by the spiro (C11) atom (Fig 1). The two fragments are almost perpendicular to each other (Table 2). The bond lengths of (C11—N) and (C11—O) are both approximately equal, which agrees with previous reports (Raić-Malić et al., 2004; Aldoshin & Atovmyan, 1985; Aldoshin et al., 1987). The spiro carbon atom (C11) is out of the plane of the other four indoline ring atoms (Table 2). The indoline ring is quite coplanar with the fused benzene ring (Table 2). The sum of the angles of the nitrogen atom at the indoline moiety is 352.46°, which indicates a pyramidal arrangement about this atom. These results are in agreement with previous reports (Raić-Malić et al., 2004).

Related literature top

For related literature, see: Carno & Guglielmetti (1998); Kholmanskii & Dyumanev (1987); Tamai & Miyasaka (2000); Krongauz et al. (2000); Minkin (2004); Crano et al. (1996); Dvornikov et al. (1994); Tamai & Miyasaka (2000); Yoshida & Morinaka (1994); Willner et al. (1993); Byrne et al. (2006a,b); Raić-Malić et al. (2004); Aldoshin & Atovmyan (1985); Aldoshin et al. (1987) . For the synthesis of the title compound, see: Martin et al. (1998.

For related literature, see: Mannschreeck et al. (1999); Minkin (2004).

Experimental top

The title compound was originally synthesized according to a method outlined in a patent (Martin et al., 1998). Our procedure differs from the original synthesis, especially with regard to the purification process. Single crystals suitable for X-ray diffraction were grown by slow evaporation from ethanol solution.

To 5-chlorosalicylaldehyde (1.53 g, 9.6 mmol) in 10 ml e thanol, a solution of 5-chloro-2-methylene-1,3,3-trimethylindoline (1.95 ml, 9.6 mmol) in 20 ml of ethanol was added slowly, over 30 min. This reaction mixture was heated to reflux over 24 h and then cooled down to ambient temperature. The solvent was evaporated by vacuum and the resulting crude compound was purified by column chromatography from the system solvent of 1:5, ethyl acetate: hexane, yielding a white powder (2.30 g, 69.4%).

Refinement top

All hydrogen atoms were located in the difference fourier map and allowed to refine isotropic without any restraints. C—H bond lenghts vary from 0.92 (2) to 1.00 (2) Å.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. A perspective view of the asymmetric unit of title compound, showing the atom numbering and thermal ellipsoids at a 50% probability level.
5',6-Dichloro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indoline] top
Crystal data top
C19H17Cl2NOF(000) = 720
Mr = 346.24Dx = 1.401 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7373 reflections
a = 8.3105 (7) Åθ = 2.2–31.7°
b = 18.2576 (16) ŵ = 0.40 mm1
c = 11.1921 (10) ÅT = 100 K
β = 104.770 (2)°Plate, colourless
V = 1642.1 (2) Å30.50 × 0.40 × 0.05 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4312 independent reflections
Radiation source: fine-focus sealed tube3857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.366 pixels mm-1θmax = 29.0°, θmin = 2.2°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 2424
Tmin = 0.740, Tmax = 0.980l = 1515
16175 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.122All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0653P)2 + 1.2622P]
where P = (Fo2 + 2Fc2)/3
4312 reflections(Δ/σ)max = 0.002
276 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C19H17Cl2NOV = 1642.1 (2) Å3
Mr = 346.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3105 (7) ŵ = 0.40 mm1
b = 18.2576 (16) ÅT = 100 K
c = 11.1921 (10) Å0.50 × 0.40 × 0.05 mm
β = 104.770 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4312 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3857 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.980Rint = 0.023
16175 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.122All H-atom parameters refined
S = 1.05Δρmax = 0.96 e Å3
4312 reflectionsΔρmin = 0.25 e Å3
276 parameters
Special details top

Experimental. 1H NMR δ(CDCl3); 1.190 (S, 3H, CH3), 1.30 (S, 3H, CH~3~),2.72 (S, 3H, CH3), 5.73 (d, 1H, J= 10.4 Hz, CH=CH), 6.46 ( d, H, J= 12.8 Hz, Ar-H), 6.67 (d, 1H, J =9.6 Hz, Ar-H), 6.83 (d, 1H, J = 16.4, Ar-H), 7.01-7.08 ( m, 2H, Ar-H), 7.15 ( d, 1H, J = 10.4 Hz, CH=CH).

13C NMR δ(CDCl3); 19.95, 25.68, 29.04, 51.96, 104.60, 107.78, 116.33, 119.91,120.17, 122.11, 123.93, 124.85, 126.28, 127.37, 128.80, 129.50, 138.53, 146.73,152.80.

M.S. (m/z ion) (m/z 346.2).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.29108 (6)0.46363 (2)0.01666 (4)0.02892 (13)
C11.2126 (2)0.38771 (9)0.07835 (15)0.0198 (3)
C21.0760 (2)0.39650 (9)0.12870 (15)0.0187 (3)
H21.029 (3)0.4437 (13)0.133 (2)0.025 (5)*
C31.01780 (19)0.33524 (8)0.17644 (14)0.0160 (3)
C41.09359 (19)0.26690 (8)0.17419 (14)0.0169 (3)
C51.2295 (2)0.25851 (9)0.12441 (16)0.0202 (3)
H51.284 (3)0.2115 (12)0.120 (2)0.020 (5)*
C61.2886 (2)0.32043 (10)0.07558 (16)0.0223 (3)
H61.381 (3)0.3155 (12)0.037 (2)0.024 (5)*
N1.01339 (17)0.21423 (7)0.22743 (13)0.0186 (3)
C71.0459 (2)0.13674 (9)0.21878 (17)0.0225 (3)
H7A1.015 (3)0.1214 (13)0.136 (2)0.029 (6)*
H7B0.989 (3)0.1089 (13)0.271 (2)0.030 (6)*
H7C1.163 (3)0.1284 (14)0.256 (2)0.038 (7)*
C80.88187 (19)0.32673 (8)0.24368 (14)0.0150 (3)
C90.9546 (2)0.34836 (9)0.37930 (15)0.0197 (3)
H9A0.989 (3)0.3981 (13)0.383 (2)0.024 (5)*
H9B0.870 (3)0.3426 (12)0.427 (2)0.027 (6)*
H9C1.051 (3)0.3191 (13)0.419 (2)0.029 (6)*
C100.7265 (2)0.37244 (10)0.18951 (16)0.0204 (3)
H10A0.687 (3)0.3635 (12)0.100 (2)0.022 (5)*
H10B0.756 (3)0.4243 (13)0.202 (2)0.028 (6)*
H10C0.647 (3)0.3607 (12)0.233 (2)0.023 (5)*
C110.85232 (19)0.24213 (9)0.23280 (14)0.0163 (3)
O0.73274 (14)0.23176 (6)0.11246 (10)0.0178 (2)
C120.7959 (2)0.20568 (9)0.33518 (15)0.0194 (3)
H120.853 (3)0.2181 (12)0.417 (2)0.025 (5)*
C130.6788 (2)0.15405 (9)0.31410 (15)0.0200 (3)
H130.651 (3)0.1291 (13)0.381 (2)0.028 (6)*
C140.5891 (2)0.13478 (8)0.18904 (15)0.0166 (3)
C150.61892 (19)0.17667 (8)0.09238 (14)0.0147 (3)
C160.52518 (19)0.16618 (9)0.02828 (14)0.0159 (3)
H160.550 (3)0.1972 (12)0.090 (2)0.021 (5)*
C170.4051 (2)0.11154 (9)0.05435 (15)0.0185 (3)
H170.345 (2)0.1032 (11)0.1356 (18)0.014 (5)*
C180.38016 (19)0.06811 (8)0.04128 (16)0.0183 (3)
Cl20.23079 (5)0.00073 (2)0.00933 (4)0.02523 (13)
C190.4695 (2)0.07902 (9)0.16192 (16)0.0188 (3)
H190.452 (3)0.0512 (12)0.226 (2)0.022 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0321 (2)0.0223 (2)0.0349 (2)0.00767 (16)0.01332 (18)0.00340 (17)
C10.0173 (7)0.0211 (8)0.0209 (7)0.0046 (6)0.0047 (6)0.0022 (6)
C20.0180 (7)0.0160 (7)0.0208 (7)0.0002 (6)0.0026 (6)0.0016 (6)
C30.0129 (7)0.0172 (7)0.0165 (7)0.0009 (5)0.0015 (5)0.0014 (5)
C40.0145 (7)0.0176 (7)0.0171 (7)0.0003 (5)0.0016 (5)0.0016 (5)
C50.0152 (7)0.0200 (8)0.0248 (8)0.0016 (6)0.0041 (6)0.0025 (6)
C60.0174 (8)0.0249 (8)0.0248 (8)0.0022 (6)0.0061 (6)0.0025 (6)
N0.0187 (6)0.0149 (6)0.0224 (7)0.0011 (5)0.0054 (5)0.0002 (5)
C70.0284 (9)0.0143 (7)0.0252 (8)0.0031 (6)0.0078 (7)0.0011 (6)
C80.0141 (7)0.0149 (7)0.0158 (7)0.0007 (5)0.0033 (5)0.0021 (5)
C90.0205 (8)0.0199 (8)0.0178 (7)0.0011 (6)0.0032 (6)0.0037 (6)
C100.0157 (7)0.0213 (8)0.0240 (8)0.0019 (6)0.0048 (6)0.0012 (6)
C110.0179 (7)0.0166 (7)0.0134 (7)0.0020 (5)0.0022 (5)0.0011 (5)
O0.0204 (5)0.0194 (6)0.0125 (5)0.0082 (4)0.0023 (4)0.0001 (4)
C120.0235 (8)0.0199 (7)0.0145 (7)0.0006 (6)0.0045 (6)0.0002 (6)
C130.0231 (8)0.0203 (8)0.0180 (7)0.0001 (6)0.0080 (6)0.0026 (6)
C140.0169 (7)0.0147 (7)0.0190 (7)0.0010 (5)0.0058 (6)0.0003 (5)
C150.0133 (6)0.0134 (6)0.0182 (7)0.0001 (5)0.0056 (5)0.0013 (5)
C160.0132 (7)0.0173 (7)0.0171 (7)0.0004 (5)0.0039 (5)0.0006 (5)
C170.0143 (7)0.0182 (7)0.0216 (8)0.0001 (6)0.0018 (6)0.0028 (6)
C180.0122 (7)0.0117 (6)0.0308 (8)0.0002 (5)0.0052 (6)0.0012 (6)
Cl20.0158 (2)0.01421 (19)0.0436 (3)0.00319 (13)0.00372 (17)0.00058 (15)
C190.0179 (7)0.0146 (7)0.0256 (8)0.0007 (6)0.0086 (6)0.0034 (6)
Geometric parameters (Å, º) top
Cl1—C11.7474 (17)C9—H9C0.97 (2)
C1—C61.385 (2)C10—H10A0.98 (2)
C1—C21.399 (2)C10—H10B0.98 (2)
C2—C31.379 (2)C10—H10C0.94 (2)
C2—H20.95 (2)C11—O1.4680 (18)
C3—C41.401 (2)C11—C121.500 (2)
C3—C81.517 (2)O—C151.3596 (18)
C4—N1.388 (2)C12—C131.332 (2)
C4—C51.389 (2)C12—H120.94 (2)
C5—C61.398 (2)C13—C141.451 (2)
C5—H50.98 (2)C13—H130.95 (2)
C6—H60.98 (2)C14—C151.397 (2)
N—C111.448 (2)C14—C191.401 (2)
N—C71.448 (2)C15—C161.390 (2)
C7—H7A0.94 (2)C16—C171.389 (2)
C7—H7B0.98 (2)C16—H160.96 (2)
C7—H7C0.96 (3)C17—C181.389 (2)
C8—C101.527 (2)C17—H170.93 (2)
C8—C91.535 (2)C18—C191.379 (2)
C8—C111.564 (2)C18—Cl21.7384 (16)
C9—H9A0.95 (2)C19—H190.92 (2)
C9—H9B1.00 (2)
C6—C1—C2122.16 (15)H9B—C9—H9C107.9 (19)
C6—C1—Cl1118.44 (13)C8—C10—H10A109.9 (13)
C2—C1—Cl1119.41 (13)C8—C10—H10B108.3 (14)
C3—C2—C1117.62 (15)H10A—C10—H10B108.3 (18)
C3—C2—H2121.6 (14)C8—C10—H10C107.7 (14)
C1—C2—H2120.7 (14)H10A—C10—H10C113.3 (18)
C2—C3—C4120.77 (15)H10B—C10—H10C109.2 (19)
C2—C3—C8130.88 (14)N—C11—O109.47 (12)
C4—C3—C8108.24 (13)N—C11—C12110.36 (13)
N—C4—C5128.63 (15)O—C11—C12111.93 (13)
N—C4—C3110.00 (14)N—C11—C8102.84 (12)
C5—C4—C3121.37 (15)O—C11—C8104.77 (12)
C4—C5—C6118.05 (15)C12—C11—C8116.89 (13)
C4—C5—H5123.3 (13)C15—O—C11121.79 (12)
C6—C5—H5118.6 (13)C13—C12—C11122.36 (15)
C1—C6—C5120.02 (15)C13—C12—H12120.5 (14)
C1—C6—H6120.4 (13)C11—C12—H12117.0 (14)
C5—C6—H6119.5 (13)C12—C13—C14120.98 (15)
C4—N—C11108.93 (13)C12—C13—H13120.8 (14)
C4—N—C7122.00 (14)C14—C13—H13118.2 (14)
C11—N—C7122.46 (14)C15—C14—C19119.07 (15)
N—C7—H7A110.4 (14)C15—C14—C13117.73 (14)
N—C7—H7B109.9 (14)C19—C14—C13123.13 (15)
H7A—C7—H7B112 (2)O—C15—C16117.17 (14)
N—C7—H7C108.0 (16)O—C15—C14122.00 (14)
H7A—C7—H7C112 (2)C16—C15—C14120.72 (14)
H7B—C7—H7C104 (2)C17—C16—C15119.88 (15)
C3—C8—C10114.10 (13)C17—C16—H16123.2 (13)
C3—C8—C9107.98 (13)C15—C16—H16116.9 (13)
C10—C8—C9109.39 (13)C16—C17—C18119.23 (15)
C3—C8—C11100.63 (12)C16—C17—H17119.9 (12)
C10—C8—C11114.13 (13)C18—C17—H17120.8 (12)
C9—C8—C11110.21 (13)C19—C18—C17121.53 (15)
C8—C9—H9A109.3 (13)C19—C18—Cl2118.93 (13)
C8—C9—H9B110.6 (13)C17—C18—Cl2119.53 (13)
H9A—C9—H9B108.9 (19)C18—C19—C14119.48 (15)
C8—C9—H9C112.7 (14)C18—C19—H19121.8 (14)
H9A—C9—H9C107.3 (19)C14—C19—H19118.7 (14)
C6—C1—C2—C30.0 (2)C9—C8—C11—N84.95 (15)
Cl1—C1—C2—C3179.99 (12)C3—C8—C11—O85.57 (13)
C1—C2—C3—C40.0 (2)C10—C8—C11—O37.07 (17)
C1—C2—C3—C8175.66 (15)C9—C8—C11—O160.62 (12)
C2—C3—C4—N179.88 (14)C3—C8—C11—C12149.91 (14)
C8—C3—C4—N3.35 (17)C10—C8—C11—C1287.45 (17)
C2—C3—C4—C50.2 (2)C9—C8—C11—C1236.10 (19)
C8—C3—C4—C5176.36 (14)N—C11—O—C15102.17 (16)
N—C4—C5—C6179.99 (16)C12—C11—O—C1520.53 (19)
C3—C4—C5—C60.4 (2)C8—C11—O—C15148.14 (13)
C2—C1—C6—C50.2 (3)N—C11—C12—C13104.55 (18)
Cl1—C1—C6—C5179.82 (13)O—C11—C12—C1317.6 (2)
C4—C5—C6—C10.4 (3)C8—C11—C12—C13138.45 (16)
C5—C4—N—C11163.27 (16)C11—C12—C13—C145.4 (3)
C3—C4—N—C1117.04 (17)C12—C13—C14—C155.7 (2)
C5—C4—N—C711.2 (3)C12—C13—C14—C19177.48 (16)
C3—C4—N—C7169.10 (15)C11—O—C15—C16172.39 (13)
C2—C3—C8—C1041.2 (2)C11—O—C15—C1411.3 (2)
C4—C3—C8—C10142.78 (14)C19—C14—C15—O179.72 (14)
C2—C3—C8—C980.7 (2)C13—C14—C15—O2.8 (2)
C4—C3—C8—C995.37 (15)C19—C14—C15—C163.6 (2)
C2—C3—C8—C11163.81 (16)C13—C14—C15—C16173.34 (14)
C4—C3—C8—C1120.12 (15)O—C15—C16—C17178.97 (14)
C4—N—C11—O81.89 (15)C14—C15—C16—C172.7 (2)
C7—N—C11—O70.01 (18)C15—C16—C17—C180.2 (2)
C4—N—C11—C12154.49 (13)C16—C17—C18—C191.4 (2)
C7—N—C11—C1253.62 (19)C16—C17—C18—Cl2179.66 (12)
C4—N—C11—C829.08 (16)C17—C18—C19—C140.4 (2)
C7—N—C11—C8179.02 (14)Cl2—C18—C19—C14179.39 (12)
C3—C8—C11—N28.87 (14)C15—C14—C19—C182.0 (2)
C10—C8—C11—N151.51 (13)C13—C14—C19—C18174.72 (15)

Experimental details

Crystal data
Chemical formulaC19H17Cl2NO
Mr346.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.3105 (7), 18.2576 (16), 11.1921 (10)
β (°) 104.770 (2)
V3)1642.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.50 × 0.40 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.740, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
16175, 4312, 3857
Rint0.023
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.122, 1.05
No. of reflections4312
No. of parameters276
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.96, 0.25

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
N—C111.448 (2)C11—O1.4680 (18)
C4—N—C11108.93 (13)N—C11—C12110.36 (13)
C4—N—C7122.00 (14)O—C11—C8104.77 (12)
C11—N—C7122.46 (14)
C8—C3—C4—N3.35 (17)C3—C8—C11—N28.87 (14)
C7—N—C11—C8179.02 (14)
Selected interplanar angles for the title compound top
Atoms defining plane 1Atoms defining plane 2Interplanar angle (°)
C2, C6, C8, NC11, C19, O85.03 (4)
C3, C4, C8, NC8, C11, N28.9 (1)
C1, C2, C3, C4, C5, C6C3, C4, C8, N2.4 (1)
 

Acknowledgements

This work was supported financially by the Science Found­ation of Ireland (grant SFI 03/IN3/1361) and the Environmental Protection Agency (grant 2004-RS-AIC-M4).

References

First citationAldoshin, S. M. & Atovmyan, L. O. (1985). Izv. Akad. Nauk SSSR Ser. Khim. p. 191.  Google Scholar
First citationAldoshin, S. M., Atovmyan, L. O. & Kozina, O. A. (1987). Izv. Akad. Nauk SSSR Ser. Khim, 190..  Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationByrne, R. J., Radu, A., Alhashimy, N., Slater, C., Yerazunis, W. S. & Diamond, D. (2006a). Proceedings of the European Coatings Conference `Smart Coatings', Berlin, Germany, pp. 65–76.  Google Scholar
First citationByrne, R. J., Stitzel, S. E. & Diamond, D. (2006b). J. Mater. Chem. 16, 1332–1337.  Web of Science CrossRef CAS Google Scholar
First citationCrano & Guglielmetti (1999). Editors. Organic Photochromic and Thermochromic Compounds, Vol. 2. New York: Kluwer Academic.  Google Scholar
First citationCrano, J. C., Flood, T., Knowles, D., Kumar, A. & Van Gemert, B. (1996). Pure Appl. Chem. 68, 1395–1398.  CrossRef CAS Web of Science Google Scholar
First citationDvornikov, A. S., Malkin, J. & Rentzepis, P. M. (1994). J. Phys. Chem. 98, 6746–6752.  CrossRef CAS Web of Science Google Scholar
First citationKholmanskii, A. S. & Dyumanev, K. M. (1987). Russ. Chem. Rev. 56, 136–151.  CrossRef Google Scholar
First citationKrongauz, V., Berkovic, G. & Weiss, V. (2000). Chem. Rev. 100, 1741.  PubMed Google Scholar
First citationMannschreeck, A., Lorenz, K. & Schinabeck, M. (1999). Organic Photochromic and Thermochromic Compounds, Vol. 2, edited by J. C. Crano & R. Guglielmetti, pp. 11–83. New York: Kluwer Academic.  Google Scholar
First citationMartin, T. I., Jennings, C. A., Johnson, E. G. & Oliver, J. F. (1998). Patent AN 392 121.  Google Scholar
First citationMinkin, V. I. (2004). Chem. Rev. 104, 2751–2776.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRaić-Malić, S., Tomašković, L., Mrvoš-Sermek, D., Prugovečki, B., Cetina, M., Grdiša, M., Krešimir, P., Mannschreck, A., Balzarini, J., Clercq, E. D. & Mintas, M. (2004). Bioorg. Med. Chem. 12, 1037–1045.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamai, N. & Miyasaka, H. (2000). Chem. Rev. 100, 1875–1890.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationWillner, I., Rubin, S., Shatzmiller, R. & Zor, T. (1993). J. Am. Chem. Soc. 115, 8690–8694.  CrossRef CAS Web of Science Google Scholar
First citationYoshida, T. & Morinaka, A. (1994). J. Photochem. Photobiol. 78, 179–183.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1430-o1431
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds