organic compounds
5′,6-Dichloro-1′,3′,3′-trimethylspiro[2H-1-benzopyran-2,2′-indoline]
aAdaptive Sensors Group, National Centre of Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and bSchool of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
*Correspondence e-mail: dermot.diamond@dcu.ie
In the 19H17Cl2NO, the indoline and benzopyran ring systems are approximately perpendicular to each other. The indoline ring is in an with the spiro C atom as the flap. The N atom of the indoline ring forms a pyramidal environment, the sum of the angles at this atom being 352.46°.
of the title compound, CRelated literature
For related literature, see: Crano & Guglielmetti (1999); Kholmanskii & Dyumanev (1987); Tamai & Miyasaka (2000); Krongauz et al. (2000); Minkin (2004); Crano et al. (1996); Dvornikov et al. (1994); Tamai & Miyasaka (2000); Yoshida & Morinaka (1994); Willner et al. (1993); Byrne et al. (2006a,b); Raić-Malić et al. (2004); Aldoshin & Atovmyan (1985); Aldoshin et al. (1987); Mannschreeck et al. (1999). For the synthesis of the title compound, see: Martin et al. (1998).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).
Supporting information
10.1107/S1600536808018722/nc2106sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808018722/nc2106Isup2.hkl
The title compound was originally synthesized according to a method outlined in a patent (Martin et al., 1998). Our procedure differs from the original synthesis, especially with regard to the purification process. Single crystals suitable for X-ray diffraction were grown by slow evaporation from ethanol solution.
To 5-chlorosalicylaldehyde (1.53 g, 9.6 mmol) in 10 ml e thanol, a solution of 5-chloro-2-methylene-1,3,3-trimethylindoline (1.95 ml, 9.6 mmol) in 20 ml of ethanol was added slowly, over 30 min. This reaction mixture was heated to reflux over 24 h and then cooled down to ambient temperature. The solvent was evaporated by vacuum and the resulting crude compound was purified by
from the system solvent of 1:5, ethyl acetate: hexane, yielding a white powder (2.30 g, 69.4%).All hydrogen atoms were located in the difference fourier map and allowed to refine isotropic without any restraints. C—H bond lenghts vary from 0.92 (2) to 1.00 (2) Å.
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).Fig. 1. A perspective view of the asymmetric unit of title compound, showing the atom numbering and thermal ellipsoids at a 50% probability level. |
C19H17Cl2NO | F(000) = 720 |
Mr = 346.24 | Dx = 1.401 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7373 reflections |
a = 8.3105 (7) Å | θ = 2.2–31.7° |
b = 18.2576 (16) Å | µ = 0.40 mm−1 |
c = 11.1921 (10) Å | T = 100 K |
β = 104.770 (2)° | Plate, colourless |
V = 1642.1 (2) Å3 | 0.50 × 0.40 × 0.05 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 4312 independent reflections |
Radiation source: fine-focus sealed tube | 3857 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 8.366 pixels mm-1 | θmax = 29.0°, θmin = 2.2° |
ϕ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | k = −24→24 |
Tmin = 0.740, Tmax = 0.980 | l = −15→15 |
16175 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.122 | All H-atom parameters refined |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0653P)2 + 1.2622P] where P = (Fo2 + 2Fc2)/3 |
4312 reflections | (Δ/σ)max = 0.002 |
276 parameters | Δρmax = 0.96 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C19H17Cl2NO | V = 1642.1 (2) Å3 |
Mr = 346.24 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.3105 (7) Å | µ = 0.40 mm−1 |
b = 18.2576 (16) Å | T = 100 K |
c = 11.1921 (10) Å | 0.50 × 0.40 × 0.05 mm |
β = 104.770 (2)° |
Bruker SMART CCD area-detector diffractometer | 4312 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 3857 reflections with I > 2σ(I) |
Tmin = 0.740, Tmax = 0.980 | Rint = 0.023 |
16175 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.122 | All H-atom parameters refined |
S = 1.05 | Δρmax = 0.96 e Å−3 |
4312 reflections | Δρmin = −0.25 e Å−3 |
276 parameters |
Experimental. 1H NMR δ(CDCl3); 1.190 (S, 3H, CH3), 1.30 (S, 3H, CH~3~),2.72 (S, 3H, CH3), 5.73 (d, 1H, J= 10.4 Hz, CH=CH), 6.46 ( d, H, J= 12.8 Hz, Ar-H), 6.67 (d, 1H, J =9.6 Hz, Ar-H), 6.83 (d, 1H, J = 16.4, Ar-H), 7.01-7.08 ( m, 2H, Ar-H), 7.15 ( d, 1H, J = 10.4 Hz, CH=CH). 13C NMR δ(CDCl3); 19.95, 25.68, 29.04, 51.96, 104.60, 107.78, 116.33, 119.91,120.17, 122.11, 123.93, 124.85, 126.28, 127.37, 128.80, 129.50, 138.53, 146.73,152.80. M.S. (m/z ion) (m/z 346.2). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 1.29108 (6) | 0.46363 (2) | 0.01666 (4) | 0.02892 (13) | |
C1 | 1.2126 (2) | 0.38771 (9) | 0.07835 (15) | 0.0198 (3) | |
C2 | 1.0760 (2) | 0.39650 (9) | 0.12870 (15) | 0.0187 (3) | |
H2 | 1.029 (3) | 0.4437 (13) | 0.133 (2) | 0.025 (5)* | |
C3 | 1.01780 (19) | 0.33524 (8) | 0.17644 (14) | 0.0160 (3) | |
C4 | 1.09359 (19) | 0.26690 (8) | 0.17419 (14) | 0.0169 (3) | |
C5 | 1.2295 (2) | 0.25851 (9) | 0.12441 (16) | 0.0202 (3) | |
H5 | 1.284 (3) | 0.2115 (12) | 0.120 (2) | 0.020 (5)* | |
C6 | 1.2886 (2) | 0.32043 (10) | 0.07558 (16) | 0.0223 (3) | |
H6 | 1.381 (3) | 0.3155 (12) | 0.037 (2) | 0.024 (5)* | |
N | 1.01339 (17) | 0.21423 (7) | 0.22743 (13) | 0.0186 (3) | |
C7 | 1.0459 (2) | 0.13674 (9) | 0.21878 (17) | 0.0225 (3) | |
H7A | 1.015 (3) | 0.1214 (13) | 0.136 (2) | 0.029 (6)* | |
H7B | 0.989 (3) | 0.1089 (13) | 0.271 (2) | 0.030 (6)* | |
H7C | 1.163 (3) | 0.1284 (14) | 0.256 (2) | 0.038 (7)* | |
C8 | 0.88187 (19) | 0.32673 (8) | 0.24368 (14) | 0.0150 (3) | |
C9 | 0.9546 (2) | 0.34836 (9) | 0.37930 (15) | 0.0197 (3) | |
H9A | 0.989 (3) | 0.3981 (13) | 0.383 (2) | 0.024 (5)* | |
H9B | 0.870 (3) | 0.3426 (12) | 0.427 (2) | 0.027 (6)* | |
H9C | 1.051 (3) | 0.3191 (13) | 0.419 (2) | 0.029 (6)* | |
C10 | 0.7265 (2) | 0.37244 (10) | 0.18951 (16) | 0.0204 (3) | |
H10A | 0.687 (3) | 0.3635 (12) | 0.100 (2) | 0.022 (5)* | |
H10B | 0.756 (3) | 0.4243 (13) | 0.202 (2) | 0.028 (6)* | |
H10C | 0.647 (3) | 0.3607 (12) | 0.233 (2) | 0.023 (5)* | |
C11 | 0.85232 (19) | 0.24213 (9) | 0.23280 (14) | 0.0163 (3) | |
O | 0.73274 (14) | 0.23176 (6) | 0.11246 (10) | 0.0178 (2) | |
C12 | 0.7959 (2) | 0.20568 (9) | 0.33518 (15) | 0.0194 (3) | |
H12 | 0.853 (3) | 0.2181 (12) | 0.417 (2) | 0.025 (5)* | |
C13 | 0.6788 (2) | 0.15405 (9) | 0.31410 (15) | 0.0200 (3) | |
H13 | 0.651 (3) | 0.1291 (13) | 0.381 (2) | 0.028 (6)* | |
C14 | 0.5891 (2) | 0.13478 (8) | 0.18904 (15) | 0.0166 (3) | |
C15 | 0.61892 (19) | 0.17667 (8) | 0.09238 (14) | 0.0147 (3) | |
C16 | 0.52518 (19) | 0.16618 (9) | −0.02828 (14) | 0.0159 (3) | |
H16 | 0.550 (3) | 0.1972 (12) | −0.090 (2) | 0.021 (5)* | |
C17 | 0.4051 (2) | 0.11154 (9) | −0.05435 (15) | 0.0185 (3) | |
H17 | 0.345 (2) | 0.1032 (11) | −0.1356 (18) | 0.014 (5)* | |
C18 | 0.38016 (19) | 0.06811 (8) | 0.04128 (16) | 0.0183 (3) | |
Cl2 | 0.23079 (5) | −0.00073 (2) | 0.00933 (4) | 0.02523 (13) | |
C19 | 0.4695 (2) | 0.07902 (9) | 0.16192 (16) | 0.0188 (3) | |
H19 | 0.452 (3) | 0.0512 (12) | 0.226 (2) | 0.022 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0321 (2) | 0.0223 (2) | 0.0349 (2) | −0.00767 (16) | 0.01332 (18) | 0.00340 (17) |
C1 | 0.0173 (7) | 0.0211 (8) | 0.0209 (7) | −0.0046 (6) | 0.0047 (6) | 0.0022 (6) |
C2 | 0.0180 (7) | 0.0160 (7) | 0.0208 (7) | −0.0002 (6) | 0.0026 (6) | −0.0016 (6) |
C3 | 0.0129 (7) | 0.0172 (7) | 0.0165 (7) | −0.0009 (5) | 0.0015 (5) | −0.0014 (5) |
C4 | 0.0145 (7) | 0.0176 (7) | 0.0171 (7) | −0.0003 (5) | 0.0016 (5) | −0.0016 (5) |
C5 | 0.0152 (7) | 0.0200 (8) | 0.0248 (8) | 0.0016 (6) | 0.0041 (6) | −0.0025 (6) |
C6 | 0.0174 (8) | 0.0249 (8) | 0.0248 (8) | −0.0022 (6) | 0.0061 (6) | −0.0025 (6) |
N | 0.0187 (6) | 0.0149 (6) | 0.0224 (7) | 0.0011 (5) | 0.0054 (5) | −0.0002 (5) |
C7 | 0.0284 (9) | 0.0143 (7) | 0.0252 (8) | 0.0031 (6) | 0.0078 (7) | 0.0011 (6) |
C8 | 0.0141 (7) | 0.0149 (7) | 0.0158 (7) | −0.0007 (5) | 0.0033 (5) | −0.0021 (5) |
C9 | 0.0205 (8) | 0.0199 (8) | 0.0178 (7) | −0.0011 (6) | 0.0032 (6) | −0.0037 (6) |
C10 | 0.0157 (7) | 0.0213 (8) | 0.0240 (8) | 0.0019 (6) | 0.0048 (6) | 0.0012 (6) |
C11 | 0.0179 (7) | 0.0166 (7) | 0.0134 (7) | −0.0020 (5) | 0.0022 (5) | −0.0011 (5) |
O | 0.0204 (5) | 0.0194 (6) | 0.0125 (5) | −0.0082 (4) | 0.0023 (4) | 0.0001 (4) |
C12 | 0.0235 (8) | 0.0199 (7) | 0.0145 (7) | −0.0006 (6) | 0.0045 (6) | −0.0002 (6) |
C13 | 0.0231 (8) | 0.0203 (8) | 0.0180 (7) | −0.0001 (6) | 0.0080 (6) | 0.0026 (6) |
C14 | 0.0169 (7) | 0.0147 (7) | 0.0190 (7) | 0.0010 (5) | 0.0058 (6) | 0.0003 (5) |
C15 | 0.0133 (6) | 0.0134 (6) | 0.0182 (7) | −0.0001 (5) | 0.0056 (5) | −0.0013 (5) |
C16 | 0.0132 (7) | 0.0173 (7) | 0.0171 (7) | 0.0004 (5) | 0.0039 (5) | −0.0006 (5) |
C17 | 0.0143 (7) | 0.0182 (7) | 0.0216 (8) | 0.0001 (6) | 0.0018 (6) | −0.0028 (6) |
C18 | 0.0122 (7) | 0.0117 (6) | 0.0308 (8) | −0.0002 (5) | 0.0052 (6) | −0.0012 (6) |
Cl2 | 0.0158 (2) | 0.01421 (19) | 0.0436 (3) | −0.00319 (13) | 0.00372 (17) | 0.00058 (15) |
C19 | 0.0179 (7) | 0.0146 (7) | 0.0256 (8) | 0.0007 (6) | 0.0086 (6) | 0.0034 (6) |
Cl1—C1 | 1.7474 (17) | C9—H9C | 0.97 (2) |
C1—C6 | 1.385 (2) | C10—H10A | 0.98 (2) |
C1—C2 | 1.399 (2) | C10—H10B | 0.98 (2) |
C2—C3 | 1.379 (2) | C10—H10C | 0.94 (2) |
C2—H2 | 0.95 (2) | C11—O | 1.4680 (18) |
C3—C4 | 1.401 (2) | C11—C12 | 1.500 (2) |
C3—C8 | 1.517 (2) | O—C15 | 1.3596 (18) |
C4—N | 1.388 (2) | C12—C13 | 1.332 (2) |
C4—C5 | 1.389 (2) | C12—H12 | 0.94 (2) |
C5—C6 | 1.398 (2) | C13—C14 | 1.451 (2) |
C5—H5 | 0.98 (2) | C13—H13 | 0.95 (2) |
C6—H6 | 0.98 (2) | C14—C15 | 1.397 (2) |
N—C11 | 1.448 (2) | C14—C19 | 1.401 (2) |
N—C7 | 1.448 (2) | C15—C16 | 1.390 (2) |
C7—H7A | 0.94 (2) | C16—C17 | 1.389 (2) |
C7—H7B | 0.98 (2) | C16—H16 | 0.96 (2) |
C7—H7C | 0.96 (3) | C17—C18 | 1.389 (2) |
C8—C10 | 1.527 (2) | C17—H17 | 0.93 (2) |
C8—C9 | 1.535 (2) | C18—C19 | 1.379 (2) |
C8—C11 | 1.564 (2) | C18—Cl2 | 1.7384 (16) |
C9—H9A | 0.95 (2) | C19—H19 | 0.92 (2) |
C9—H9B | 1.00 (2) | ||
C6—C1—C2 | 122.16 (15) | H9B—C9—H9C | 107.9 (19) |
C6—C1—Cl1 | 118.44 (13) | C8—C10—H10A | 109.9 (13) |
C2—C1—Cl1 | 119.41 (13) | C8—C10—H10B | 108.3 (14) |
C3—C2—C1 | 117.62 (15) | H10A—C10—H10B | 108.3 (18) |
C3—C2—H2 | 121.6 (14) | C8—C10—H10C | 107.7 (14) |
C1—C2—H2 | 120.7 (14) | H10A—C10—H10C | 113.3 (18) |
C2—C3—C4 | 120.77 (15) | H10B—C10—H10C | 109.2 (19) |
C2—C3—C8 | 130.88 (14) | N—C11—O | 109.47 (12) |
C4—C3—C8 | 108.24 (13) | N—C11—C12 | 110.36 (13) |
N—C4—C5 | 128.63 (15) | O—C11—C12 | 111.93 (13) |
N—C4—C3 | 110.00 (14) | N—C11—C8 | 102.84 (12) |
C5—C4—C3 | 121.37 (15) | O—C11—C8 | 104.77 (12) |
C4—C5—C6 | 118.05 (15) | C12—C11—C8 | 116.89 (13) |
C4—C5—H5 | 123.3 (13) | C15—O—C11 | 121.79 (12) |
C6—C5—H5 | 118.6 (13) | C13—C12—C11 | 122.36 (15) |
C1—C6—C5 | 120.02 (15) | C13—C12—H12 | 120.5 (14) |
C1—C6—H6 | 120.4 (13) | C11—C12—H12 | 117.0 (14) |
C5—C6—H6 | 119.5 (13) | C12—C13—C14 | 120.98 (15) |
C4—N—C11 | 108.93 (13) | C12—C13—H13 | 120.8 (14) |
C4—N—C7 | 122.00 (14) | C14—C13—H13 | 118.2 (14) |
C11—N—C7 | 122.46 (14) | C15—C14—C19 | 119.07 (15) |
N—C7—H7A | 110.4 (14) | C15—C14—C13 | 117.73 (14) |
N—C7—H7B | 109.9 (14) | C19—C14—C13 | 123.13 (15) |
H7A—C7—H7B | 112 (2) | O—C15—C16 | 117.17 (14) |
N—C7—H7C | 108.0 (16) | O—C15—C14 | 122.00 (14) |
H7A—C7—H7C | 112 (2) | C16—C15—C14 | 120.72 (14) |
H7B—C7—H7C | 104 (2) | C17—C16—C15 | 119.88 (15) |
C3—C8—C10 | 114.10 (13) | C17—C16—H16 | 123.2 (13) |
C3—C8—C9 | 107.98 (13) | C15—C16—H16 | 116.9 (13) |
C10—C8—C9 | 109.39 (13) | C16—C17—C18 | 119.23 (15) |
C3—C8—C11 | 100.63 (12) | C16—C17—H17 | 119.9 (12) |
C10—C8—C11 | 114.13 (13) | C18—C17—H17 | 120.8 (12) |
C9—C8—C11 | 110.21 (13) | C19—C18—C17 | 121.53 (15) |
C8—C9—H9A | 109.3 (13) | C19—C18—Cl2 | 118.93 (13) |
C8—C9—H9B | 110.6 (13) | C17—C18—Cl2 | 119.53 (13) |
H9A—C9—H9B | 108.9 (19) | C18—C19—C14 | 119.48 (15) |
C8—C9—H9C | 112.7 (14) | C18—C19—H19 | 121.8 (14) |
H9A—C9—H9C | 107.3 (19) | C14—C19—H19 | 118.7 (14) |
C6—C1—C2—C3 | 0.0 (2) | C9—C8—C11—N | −84.95 (15) |
Cl1—C1—C2—C3 | 179.99 (12) | C3—C8—C11—O | −85.57 (13) |
C1—C2—C3—C4 | 0.0 (2) | C10—C8—C11—O | 37.07 (17) |
C1—C2—C3—C8 | 175.66 (15) | C9—C8—C11—O | 160.62 (12) |
C2—C3—C4—N | 179.88 (14) | C3—C8—C11—C12 | 149.91 (14) |
C8—C3—C4—N | 3.35 (17) | C10—C8—C11—C12 | −87.45 (17) |
C2—C3—C4—C5 | 0.2 (2) | C9—C8—C11—C12 | 36.10 (19) |
C8—C3—C4—C5 | −176.36 (14) | N—C11—O—C15 | 102.17 (16) |
N—C4—C5—C6 | 179.99 (16) | C12—C11—O—C15 | −20.53 (19) |
C3—C4—C5—C6 | −0.4 (2) | C8—C11—O—C15 | −148.14 (13) |
C2—C1—C6—C5 | −0.2 (3) | N—C11—C12—C13 | −104.55 (18) |
Cl1—C1—C6—C5 | 179.82 (13) | O—C11—C12—C13 | 17.6 (2) |
C4—C5—C6—C1 | 0.4 (3) | C8—C11—C12—C13 | 138.45 (16) |
C5—C4—N—C11 | −163.27 (16) | C11—C12—C13—C14 | −5.4 (3) |
C3—C4—N—C11 | 17.04 (17) | C12—C13—C14—C15 | −5.7 (2) |
C5—C4—N—C7 | −11.2 (3) | C12—C13—C14—C19 | 177.48 (16) |
C3—C4—N—C7 | 169.10 (15) | C11—O—C15—C16 | −172.39 (13) |
C2—C3—C8—C10 | 41.2 (2) | C11—O—C15—C14 | 11.3 (2) |
C4—C3—C8—C10 | −142.78 (14) | C19—C14—C15—O | 179.72 (14) |
C2—C3—C8—C9 | −80.7 (2) | C13—C14—C15—O | 2.8 (2) |
C4—C3—C8—C9 | 95.37 (15) | C19—C14—C15—C16 | 3.6 (2) |
C2—C3—C8—C11 | 163.81 (16) | C13—C14—C15—C16 | −173.34 (14) |
C4—C3—C8—C11 | −20.12 (15) | O—C15—C16—C17 | −178.97 (14) |
C4—N—C11—O | 81.89 (15) | C14—C15—C16—C17 | −2.7 (2) |
C7—N—C11—O | −70.01 (18) | C15—C16—C17—C18 | 0.2 (2) |
C4—N—C11—C12 | −154.49 (13) | C16—C17—C18—C19 | 1.4 (2) |
C7—N—C11—C12 | 53.62 (19) | C16—C17—C18—Cl2 | −179.66 (12) |
C4—N—C11—C8 | −29.08 (16) | C17—C18—C19—C14 | −0.4 (2) |
C7—N—C11—C8 | 179.02 (14) | Cl2—C18—C19—C14 | −179.39 (12) |
C3—C8—C11—N | 28.87 (14) | C15—C14—C19—C18 | −2.0 (2) |
C10—C8—C11—N | 151.51 (13) | C13—C14—C19—C18 | 174.72 (15) |
Experimental details
Crystal data | |
Chemical formula | C19H17Cl2NO |
Mr | 346.24 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 8.3105 (7), 18.2576 (16), 11.1921 (10) |
β (°) | 104.770 (2) |
V (Å3) | 1642.1 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.40 |
Crystal size (mm) | 0.50 × 0.40 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.740, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16175, 4312, 3857 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.682 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.122, 1.05 |
No. of reflections | 4312 |
No. of parameters | 276 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.96, −0.25 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2001), publCIF (Westrip, 2008).
N—C11 | 1.448 (2) | C11—O | 1.4680 (18) |
C4—N—C11 | 108.93 (13) | N—C11—C12 | 110.36 (13) |
C4—N—C7 | 122.00 (14) | O—C11—C8 | 104.77 (12) |
C11—N—C7 | 122.46 (14) | ||
C8—C3—C4—N | 3.35 (17) | C3—C8—C11—N | 28.87 (14) |
C7—N—C11—C8 | 179.02 (14) |
Atoms defining plane 1 | Atoms defining plane 2 | Interplanar angle (°) |
C2, C6, C8, N | C11, C19, O | 85.03 (4) |
C3, C4, C8, N | C8, C11, N | 28.9 (1) |
C1, C2, C3, C4, C5, C6 | C3, C4, C8, N | 2.4 (1) |
Acknowledgements
This work was supported financially by the Science Foundation of Ireland (grant SFI 03/IN3/1361) and the Environmental Protection Agency (grant 2004-RS-AIC-M4).
References
Aldoshin, S. M. & Atovmyan, L. O. (1985). Izv. Akad. Nauk SSSR Ser. Khim. p. 191. Google Scholar
Aldoshin, S. M., Atovmyan, L. O. & Kozina, O. A. (1987). Izv. Akad. Nauk SSSR Ser. Khim, 190.. Google Scholar
Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Byrne, R. J., Radu, A., Alhashimy, N., Slater, C., Yerazunis, W. S. & Diamond, D. (2006a). Proceedings of the European Coatings Conference `Smart Coatings', Berlin, Germany, pp. 65–76. Google Scholar
Byrne, R. J., Stitzel, S. E. & Diamond, D. (2006b). J. Mater. Chem. 16, 1332–1337. Web of Science CrossRef CAS Google Scholar
Crano & Guglielmetti (1999). Editors. Organic Photochromic and Thermochromic Compounds, Vol. 2. New York: Kluwer Academic. Google Scholar
Crano, J. C., Flood, T., Knowles, D., Kumar, A. & Van Gemert, B. (1996). Pure Appl. Chem. 68, 1395–1398. CrossRef CAS Web of Science Google Scholar
Dvornikov, A. S., Malkin, J. & Rentzepis, P. M. (1994). J. Phys. Chem. 98, 6746–6752. CrossRef CAS Web of Science Google Scholar
Kholmanskii, A. S. & Dyumanev, K. M. (1987). Russ. Chem. Rev. 56, 136–151. CrossRef Google Scholar
Krongauz, V., Berkovic, G. & Weiss, V. (2000). Chem. Rev. 100, 1741. PubMed Google Scholar
Mannschreeck, A., Lorenz, K. & Schinabeck, M. (1999). Organic Photochromic and Thermochromic Compounds, Vol. 2, edited by J. C. Crano & R. Guglielmetti, pp. 11–83. New York: Kluwer Academic. Google Scholar
Martin, T. I., Jennings, C. A., Johnson, E. G. & Oliver, J. F. (1998). Patent AN 392 121. Google Scholar
Minkin, V. I. (2004). Chem. Rev. 104, 2751–2776. Web of Science CrossRef PubMed CAS Google Scholar
Raić-Malić, S., Tomašković, L., Mrvoš-Sermek, D., Prugovečki, B., Cetina, M., Grdiša, M., Krešimir, P., Mannschreck, A., Balzarini, J., Clercq, E. D. & Mintas, M. (2004). Bioorg. Med. Chem. 12, 1037–1045. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tamai, N. & Miyasaka, H. (2000). Chem. Rev. 100, 1875–1890. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2008). publCIF. In preparation. Google Scholar
Willner, I., Rubin, S., Shatzmiller, R. & Zor, T. (1993). J. Am. Chem. Soc. 115, 8690–8694. CrossRef CAS Web of Science Google Scholar
Yoshida, T. & Morinaka, A. (1994). J. Photochem. Photobiol. 78, 179–183. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Spiropyrans are a family of organic photochromic compounds (Carno & Guglielmetti, 1998). This family of compounds are well studied and documented (Kholmanskii & Dyumanev, 1987; Tamai & Miyasaka, 2000; Krongauz et al., 2000; Minkin, 2004) because they can be converted from a closed colourless form into a strongly coloured open form using UV irradiation. This tremendous characteristic of spiropyran compounds has been utilized by scientists for many applications such as light-sensitive eyewear (Crano et al., 1996), high density optical storage (Dvornikov et al.,1994), molecular switches (Tamai & Miyasaka, 2000, Minkin, 2004) and molecular devices (Yoshida & Morinaka, 1994; Willner et al., 1993). Our main interest was utilizing spiropyran derivatives as transducers in optical sensors, where selective binding to certain metal ions was achieved. The binding and release of such ions can be controlled by exposure to light of around 380 nm (open form) and 550 nm (close form) respectively (Byrne et al., 2006a; Byrne et al., 2006b). The title compound was envisaged as an intermediate in the synthesis of further spiropyran derivatives, whereby the chlorides groups can be replaced by substitution with variety of functional groups. The title compound consists of two molecular fragments: An indoline ring linked to a benzopyran ring by the spiro (C11) atom (Fig 1). The two fragments are almost perpendicular to each other (Table 2). The bond lengths of (C11—N) and (C11—O) are both approximately equal, which agrees with previous reports (Raić-Malić et al., 2004; Aldoshin & Atovmyan, 1985; Aldoshin et al., 1987). The spiro carbon atom (C11) is out of the plane of the other four indoline ring atoms (Table 2). The indoline ring is quite coplanar with the fused benzene ring (Table 2). The sum of the angles of the nitrogen atom at the indoline moiety is 352.46°, which indicates a pyramidal arrangement about this atom. These results are in agreement with previous reports (Raić-Malić et al., 2004).