organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Degradation of atorvastatin: (1R,2S,4S,5S)-4-(4-fluoro­phen­yl)-2-hydro­per­oxy-4-hydr­­oxy-2-iso­propyl-N,5-di­phenyl-3,6-dioxabi­cyclo­[3.1.0]hexane-1-carboxamide

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 18 June 2008; accepted 16 July 2008; online 19 July 2008)

The degradation of atorvastatin calcium in methanol and hydrogen peroxide results in the crystallization of the title compound, C26H24FNO6, which shows several differences compared with the starting compound. In the crystal structure of the title compound, intra- and inter­molecular hydrogen bonding is found.

Related literature

For related literature, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Rouleau (2005[Rouleau, J. (2005). Am. J. Med. 118 (Suppl. 12A), 28-35.]); United States Pharmacopeia (2007[United States Pharmacopeia (2007). United States Pharmacopoeia, 2nd ed. Rockville: United States Pharmacopial Convention.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24FNO6

  • Mr = 465.46

  • Monoclinic, P 21 /n

  • a = 11.7560 (6) Å

  • b = 11.7489 (6) Å

  • c = 17.0889 (9) Å

  • β = 94.438 (2)°

  • V = 2353.2 (2) Å3

  • Z = 4

  • Mo Kα radiation radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.25 × 0.18 × 0.15 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.980

  • 14754 measured reflections

  • 5340 independent reflections

  • 3008 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.136

  • S = 1.02

  • 5340 reflections

  • 318 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.86 (2) 2.36 (2) 2.780 (2) 110.8 (17)
N1—H1⋯O2i 0.86 (2) 2.37 (2) 3.216 (2) 168.0 (18)
O2—H2⋯O5 0.84 (2) 2.15 (2) 2.920 (2) 152 (2)
O2—H2⋯O3ii 0.84 (2) 2.35 (2) 2.8188 (18) 116.1 (18)
O5—H5⋯O6 0.82 1.99 2.655 (2) 138
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Atorvastatin calcium is widly used as synthetic lipid-lowering agent (Rouleau, 2005). The medicinal organic compounds are affected by the environment in which they are stored and produce degradation products through reactions with moisture (humidity) and oxygen in air (oxidation) or due to thermal shocks. Thus, all the drug substances are given an expiration date which is the time at which 10% of the initial amount of a drug is transformed to various degradation products (United States Pharmacopeia, 2007). Thus it is a standard practice to study the stability profile of a drug substance under stress. In order to simulate the air oxidation under accelerated conditions the products are subjected to the reaction with hydrogen peroxide. The purpose of this study was to see the reaction of atorvastatin calcium towards hydrogen peroxide. In this example, the title compound crystallized after the reaction at ambient temperature.

In the structure of the title compound, the central five-membered ring (O1/C1–C4) is in an envelope conformation, with the C1–C4 atoms in the plane (Fig. 1). The puckering parameters (Cremer & Pople, 1975) are Q = 0.9737 (16)Å, θ = 115.69 (10)° and ϕ = 0.10 (13)°. The dihedral angles between this ring and benzene rings C6–C11, C12–C17 and C18–C23 are 88.71 (11), 66.85 (11) and 64.39 (12)°, respectively. There is intramolecular O—H···O and N—H···O hydrogen bonding between N1 and O3, between O2 and O5 and between O5 and O6 (Fig. 1 and Table 1). In the crystal structure, the molecules are connected via intermolecular O—H···O and N—H···O hydrogen bonding (Table 1).

Related literature top

For related literature, see: Cremer & Pople (1975); Rouleau (2005); United States Pharmacopeia (2007).

Experimental top

Atorvastatin calcium (100 mg) was dissolved in methanol (25 ml) at room temperature. A separate solution (10 ml) of hydrogen peroxide (5%) was prepared in distilled water. Both the solutions were mixed togather and set aside for 2 months. The crystals suitable for x-ray diffraction of the title compound (I) were obtained by filteration.

Refinement top

The coordinates of H atoms attached with N1 and O2 were refined freely. The remaining H atoms were positioned with idealized geometry (O-H allowed to rotate but not to tip) with C—H = 0.93, 0.96 Å and O—H = 0.82 Å for aromatic, methyl and peroxide H, and were refined using a riding model with Uiso(H) = xUeq(C, N, O), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound, with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii. The dashed lines shows intramolecular H-bonding.
[Figure 2] Fig. 2. The formation of the title compound.
(1R,2S,4S,5S)-4-(4-fluorophenyl)- 2-hydroperoxy-4-hydroxy-2-isopropyl-N,5-diphenyl-3,6- dioxabicyclo[3.1.0]hexane-1-carboxamide top
Crystal data top
C26H24FNO6F(000) = 976
Mr = 465.46Dx = 1.314 Mg m3
Monoclinic, P21/nMo Kα radiation radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5340 reflections
a = 11.7560 (6) Åθ = 2.0–27.5°
b = 11.7489 (6) ŵ = 0.10 mm1
c = 17.0889 (9) ÅT = 296 K
β = 94.438 (2)°Prismatic, colorless
V = 2353.2 (2) Å30.25 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5340 independent reflections
Radiation source: fine-focus sealed tube3008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 7.50 pixels mm-1θmax = 27.5°, θmin = 2.0°
ω scansh = 1514
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 158
Tmin = 0.975, Tmax = 0.980l = 2221
14754 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.5969P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5340 reflectionsΔρmax = 0.34 e Å3
318 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: emperical, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0032 (7)
Crystal data top
C26H24FNO6V = 2353.2 (2) Å3
Mr = 465.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.7560 (6) ŵ = 0.10 mm1
b = 11.7489 (6) ÅT = 296 K
c = 17.0889 (9) Å0.25 × 0.18 × 0.15 mm
β = 94.438 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5340 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3008 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.980Rint = 0.040
14754 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.34 e Å3
5340 reflectionsΔρmin = 0.28 e Å3
318 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.7275 (2)0.00876 (18)0.10244 (10)0.1428 (12)
O10.91061 (11)0.21012 (11)0.21795 (7)0.0426 (5)
O20.78009 (12)0.35021 (11)0.17484 (8)0.0455 (5)
O30.75203 (11)0.07280 (10)0.26940 (7)0.0383 (4)
O40.96555 (12)0.28576 (11)0.34067 (8)0.0512 (5)
O50.88438 (14)0.38004 (12)0.33419 (9)0.0591 (6)
O60.78216 (14)0.25802 (13)0.43917 (8)0.0622 (6)
N10.70884 (15)0.07964 (14)0.42697 (10)0.0428 (6)
C10.79736 (16)0.23366 (15)0.18667 (11)0.0373 (6)
C20.72161 (16)0.18934 (14)0.24910 (11)0.0361 (6)
C30.79830 (16)0.16319 (15)0.31885 (11)0.0362 (6)
C40.91978 (17)0.19004 (16)0.30000 (11)0.0398 (6)
C50.76193 (17)0.17068 (16)0.40107 (11)0.0426 (7)
C60.66547 (17)0.06482 (18)0.50124 (11)0.0430 (7)
C70.64405 (19)0.0442 (2)0.52493 (13)0.0545 (8)
C80.5989 (2)0.0630 (3)0.59596 (16)0.0742 (10)
C90.5747 (2)0.0265 (3)0.64262 (15)0.0848 (13)
C100.5957 (3)0.1338 (3)0.61935 (17)0.0905 (14)
C110.6417 (2)0.1550 (2)0.54889 (15)0.0731 (10)
C120.60000 (17)0.22332 (16)0.24931 (12)0.0432 (7)
C130.56860 (19)0.31146 (18)0.29682 (14)0.0535 (8)
C140.4566 (2)0.3464 (2)0.29578 (17)0.0691 (10)
C150.3765 (2)0.2949 (2)0.2464 (2)0.0809 (13)
C160.4051 (2)0.2077 (3)0.1996 (2)0.0851 (13)
C170.5172 (2)0.1703 (2)0.20123 (15)0.0634 (9)
C180.77882 (17)0.17385 (16)0.10816 (11)0.0417 (7)
C190.6918 (2)0.2070 (2)0.05454 (13)0.0628 (9)
C200.6729 (3)0.1504 (3)0.01611 (15)0.0865 (13)
C210.7429 (3)0.0629 (3)0.03176 (16)0.0877 (13)
C220.8274 (3)0.0266 (2)0.01933 (17)0.0858 (13)
C230.8452 (2)0.08283 (19)0.09060 (14)0.0633 (9)
C241.00575 (18)0.09376 (19)0.31729 (13)0.0483 (8)
C251.1220 (2)0.1214 (2)0.28961 (16)0.0707 (10)
C261.0152 (2)0.0571 (2)0.40307 (14)0.0725 (10)
H10.7025 (18)0.0224 (18)0.3959 (12)0.0513*
H20.7978 (19)0.3806 (18)0.2186 (13)0.0546*
H50.842380.376580.370260.0709*
H70.659980.105450.493080.0653*
H80.584980.136980.612050.0891*
H90.543820.013700.690320.1016*
H100.578900.194490.651410.1082*
H110.656400.229240.533750.0877*
H130.623830.347620.329910.0642*
H140.436080.404710.328660.0830*
H150.301210.319690.244570.0971*
H160.349240.172910.166230.1022*
H170.536170.109560.169890.0761*
H190.645360.267900.065950.0754*
H200.613430.171870.052180.1038*
H220.872980.034690.007300.1031*
H230.902950.058410.126980.0760*
H240.9756 (19)0.0315 (18)0.2877 (12)0.0580*
H25A1.172690.058480.300930.1061*
H25B1.151920.188100.316280.1061*
H25C1.114870.135070.234060.1061*
H26A1.069460.003730.410360.1087*
H26B0.942050.031560.417370.1087*
H26C1.039990.120470.435540.1087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.231 (3)0.1278 (16)0.0649 (12)0.0243 (16)0.0177 (13)0.0448 (11)
O10.0387 (8)0.0528 (8)0.0357 (8)0.0054 (6)0.0016 (6)0.0093 (6)
O20.0619 (10)0.0324 (7)0.0409 (8)0.0028 (6)0.0034 (7)0.0037 (6)
O30.0471 (8)0.0307 (6)0.0361 (7)0.0042 (6)0.0036 (6)0.0030 (5)
O40.0506 (9)0.0456 (8)0.0549 (9)0.0083 (7)0.0120 (7)0.0004 (7)
O50.0700 (11)0.0434 (8)0.0632 (11)0.0068 (8)0.0008 (8)0.0020 (7)
O60.0906 (12)0.0504 (9)0.0464 (9)0.0176 (8)0.0105 (8)0.0098 (7)
N10.0522 (11)0.0422 (9)0.0347 (10)0.0061 (8)0.0080 (8)0.0016 (7)
C10.0396 (12)0.0348 (10)0.0362 (11)0.0016 (8)0.0044 (8)0.0063 (8)
C20.0416 (12)0.0293 (9)0.0364 (11)0.0029 (8)0.0024 (8)0.0022 (8)
C30.0414 (11)0.0322 (9)0.0339 (11)0.0048 (8)0.0032 (8)0.0015 (8)
C40.0437 (12)0.0412 (10)0.0329 (11)0.0068 (9)0.0064 (9)0.0042 (8)
C50.0492 (12)0.0423 (11)0.0357 (11)0.0021 (9)0.0004 (9)0.0002 (9)
C60.0379 (12)0.0577 (12)0.0334 (11)0.0021 (10)0.0024 (9)0.0001 (10)
C70.0486 (13)0.0631 (14)0.0525 (14)0.0022 (11)0.0090 (11)0.0138 (11)
C80.0561 (16)0.103 (2)0.0640 (17)0.0041 (14)0.0080 (13)0.0336 (16)
C90.0597 (18)0.156 (3)0.0398 (15)0.0171 (19)0.0110 (12)0.0042 (18)
C100.087 (2)0.124 (3)0.0645 (19)0.0228 (19)0.0319 (16)0.0354 (18)
C110.0829 (19)0.0770 (17)0.0628 (17)0.0140 (14)0.0274 (14)0.0194 (14)
C120.0416 (12)0.0378 (10)0.0497 (12)0.0045 (9)0.0002 (10)0.0081 (9)
C130.0451 (14)0.0472 (12)0.0682 (16)0.0003 (10)0.0045 (11)0.0015 (11)
C140.0549 (16)0.0530 (14)0.101 (2)0.0052 (12)0.0171 (15)0.0081 (13)
C150.0405 (15)0.0652 (17)0.137 (3)0.0015 (13)0.0072 (16)0.0209 (18)
C160.0458 (16)0.0774 (19)0.128 (3)0.0130 (14)0.0190 (16)0.0045 (18)
C170.0509 (15)0.0561 (14)0.0810 (18)0.0072 (12)0.0098 (12)0.0047 (12)
C180.0531 (13)0.0367 (10)0.0343 (11)0.0045 (9)0.0031 (9)0.0058 (8)
C190.0784 (18)0.0555 (14)0.0507 (14)0.0011 (12)0.0196 (12)0.0020 (11)
C200.120 (3)0.080 (2)0.0526 (17)0.0065 (18)0.0373 (16)0.0018 (14)
C210.142 (3)0.0704 (19)0.0476 (16)0.0215 (19)0.0116 (18)0.0167 (14)
C220.126 (3)0.0653 (17)0.0657 (19)0.0120 (17)0.0044 (18)0.0192 (14)
C230.0869 (19)0.0527 (13)0.0489 (14)0.0085 (13)0.0044 (12)0.0052 (11)
C240.0447 (13)0.0498 (12)0.0488 (14)0.0012 (10)0.0073 (10)0.0072 (10)
C250.0432 (14)0.0843 (18)0.0840 (19)0.0059 (12)0.0013 (13)0.0167 (14)
C260.0714 (17)0.0825 (18)0.0613 (16)0.0128 (14)0.0092 (13)0.0265 (13)
Geometric parameters (Å, º) top
F1—C211.365 (3)C15—C161.358 (4)
O1—C11.423 (2)C16—C171.387 (3)
O1—C41.418 (2)C18—C191.376 (3)
O2—C11.397 (2)C18—C231.371 (3)
O3—C21.450 (2)C19—C201.381 (4)
O3—C31.438 (2)C20—C211.356 (5)
O4—O51.461 (2)C21—C221.340 (5)
O4—C41.407 (2)C22—C231.387 (4)
O6—C51.229 (2)C24—C251.516 (3)
O2—H20.84 (2)C24—C261.524 (3)
O5—H50.8200C7—H70.9300
N1—C51.331 (3)C8—H80.9300
N1—C61.415 (3)C9—H90.9300
N1—H10.86 (2)C10—H100.9300
C1—C181.515 (3)C11—H110.9300
C1—C21.533 (3)C13—H130.9300
C2—C31.470 (3)C14—H140.9300
C2—C121.485 (3)C15—H150.9300
C3—C41.521 (3)C16—H160.9300
C3—C51.503 (3)C17—H170.9300
C4—C241.530 (3)C19—H190.9300
C6—C111.378 (3)C20—H200.9300
C6—C71.373 (3)C22—H220.9300
C7—C81.380 (3)C23—H230.9300
C8—C91.363 (5)C24—H240.94 (2)
C9—C101.350 (5)C25—H25A0.9600
C10—C111.380 (4)C25—H25B0.9600
C12—C171.374 (3)C25—H25C0.9600
C12—C131.384 (3)C26—H26A0.9600
C13—C141.378 (3)C26—H26B0.9600
C14—C151.357 (4)C26—H26C0.9600
C1—O1—C4113.66 (14)C18—C19—C20120.5 (2)
C2—O3—C361.20 (11)C19—C20—C21118.6 (3)
O5—O4—C4110.25 (14)F1—C21—C20119.1 (3)
C1—O2—H2105.3 (14)F1—C21—C22118.0 (3)
O4—O5—H5109.00C20—C21—C22122.9 (3)
C5—N1—C6127.44 (17)C21—C22—C23118.3 (3)
C5—N1—H1116.4 (14)C18—C23—C22120.9 (2)
C6—N1—H1116.1 (14)C4—C24—C26113.12 (18)
O1—C1—C2104.45 (14)C25—C24—C26111.13 (19)
O1—C1—C18107.99 (15)C4—C24—C25112.29 (18)
O1—C1—O2111.48 (15)C6—C7—H7120.00
O2—C1—C2110.37 (15)C8—C7—H7120.00
O2—C1—C18108.49 (15)C7—C8—H8120.00
C2—C1—C18114.03 (15)C9—C8—H8120.00
O3—C2—C358.97 (11)C8—C9—H9120.00
O3—C2—C12118.22 (15)C10—C9—H9120.00
C1—C2—C3106.41 (15)C9—C10—H10119.00
O3—C2—C1109.96 (14)C11—C10—H10119.00
C1—C2—C12121.45 (16)C6—C11—H11120.00
C3—C2—C12125.76 (17)C10—C11—H11120.00
O3—C3—C5118.09 (15)C12—C13—H13120.00
C4—C3—C5121.71 (16)C14—C13—H13120.00
C2—C3—C4108.17 (15)C13—C14—H14120.00
C2—C3—C5123.01 (16)C15—C14—H14120.00
O3—C3—C259.83 (11)C14—C15—H15120.00
O3—C3—C4110.33 (15)C16—C15—H15120.00
O4—C4—C24105.89 (16)C15—C16—H16120.00
C3—C4—C24115.00 (16)C17—C16—H16120.00
O1—C4—C24108.21 (16)C12—C17—H17120.00
O1—C4—O4110.64 (15)C16—C17—H17120.00
O1—C4—C3104.07 (15)C18—C19—H19120.00
O4—C4—C3112.99 (15)C20—C19—H19120.00
O6—C5—N1124.85 (18)C19—C20—H20121.00
N1—C5—C3116.01 (16)C21—C20—H20121.00
O6—C5—C3119.15 (17)C21—C22—H22121.00
N1—C6—C11122.63 (19)C23—C22—H22121.00
C7—C6—C11119.54 (19)C18—C23—H23120.00
N1—C6—C7117.81 (18)C22—C23—H23120.00
C6—C7—C8120.1 (2)C4—C24—H24104.8 (14)
C7—C8—C9120.2 (3)C25—C24—H24108.0 (14)
C8—C9—C10119.8 (3)C26—C24—H24107.0 (13)
C9—C10—C11121.2 (3)C24—C25—H25A109.00
C6—C11—C10119.2 (2)C24—C25—H25B109.00
C2—C12—C13120.23 (18)C24—C25—H25C109.00
C2—C12—C17120.97 (18)H25A—C25—H25B110.00
C13—C12—C17118.8 (2)H25A—C25—H25C109.00
C12—C13—C14120.9 (2)H25B—C25—H25C109.00
C13—C14—C15119.4 (2)C24—C26—H26A109.00
C14—C15—C16120.7 (2)C24—C26—H26B109.00
C15—C16—C17120.4 (3)C24—C26—H26C109.00
C12—C17—C16119.8 (2)H26A—C26—H26B109.00
C19—C18—C23118.79 (19)H26A—C26—H26C109.00
C1—C18—C19120.47 (18)H26B—C26—H26C109.00
C1—C18—C23120.69 (18)
C4—O1—C1—O2100.71 (17)O3—C3—C4—O4173.71 (14)
C4—O1—C1—C218.48 (18)O3—C3—C4—C2464.6 (2)
C4—O1—C1—C18140.20 (15)C2—C3—C4—O110.10 (19)
C1—O1—C4—O4103.48 (17)C2—C3—C4—O4109.97 (17)
C1—O1—C4—C318.17 (19)C2—C3—C4—C24128.29 (17)
C1—O1—C4—C24140.93 (16)C5—C3—C4—O1161.36 (16)
C3—O3—C2—C197.59 (16)C5—C3—C4—O441.3 (2)
C3—O3—C2—C12116.82 (19)C5—C3—C4—C2480.5 (2)
C2—O3—C3—C499.75 (16)O3—C3—C5—O6166.15 (17)
C2—O3—C3—C5113.84 (19)O3—C3—C5—N113.7 (3)
O5—O4—C4—O168.46 (18)C2—C3—C5—O695.6 (2)
O5—O4—C4—C347.78 (19)C2—C3—C5—N184.3 (2)
O5—O4—C4—C24174.52 (14)C4—C3—C5—O651.4 (3)
C6—N1—C5—O60.3 (3)C4—C3—C5—N1128.75 (19)
C6—N1—C5—C3179.54 (18)O1—C4—C24—C2558.3 (2)
C5—N1—C6—C7161.4 (2)O1—C4—C24—C26174.90 (17)
C5—N1—C6—C1120.3 (3)O4—C4—C24—C2560.3 (2)
O1—C1—C2—O351.65 (17)O4—C4—C24—C2666.5 (2)
O1—C1—C2—C310.65 (18)C3—C4—C24—C25174.17 (18)
O1—C1—C2—C12164.07 (15)C3—C4—C24—C2659.1 (2)
O2—C1—C2—O3171.59 (14)N1—C6—C7—C8178.3 (2)
O2—C1—C2—C3109.29 (16)C11—C6—C7—C80.1 (3)
O2—C1—C2—C1244.1 (2)N1—C6—C11—C10177.7 (2)
C18—C1—C2—O366.0 (2)C7—C6—C11—C100.6 (4)
C18—C1—C2—C3128.30 (16)C6—C7—C8—C90.4 (4)
C18—C1—C2—C1278.3 (2)C7—C8—C9—C100.4 (4)
O1—C1—C18—C19160.88 (18)C8—C9—C10—C110.1 (4)
O1—C1—C18—C2321.9 (2)C9—C10—C11—C60.6 (4)
O2—C1—C18—C1939.9 (2)C2—C12—C13—C14177.9 (2)
O2—C1—C18—C23142.86 (19)C17—C12—C13—C140.5 (3)
C2—C1—C18—C1983.5 (2)C2—C12—C17—C16176.6 (2)
C2—C1—C18—C2393.7 (2)C13—C12—C17—C161.7 (4)
O3—C2—C3—C4103.43 (15)C12—C13—C14—C151.2 (4)
O3—C2—C3—C5105.77 (18)C13—C14—C15—C161.7 (4)
C1—C2—C3—O3103.78 (15)C14—C15—C16—C170.4 (5)
C1—C2—C3—C40.35 (19)C15—C16—C17—C121.3 (4)
C1—C2—C3—C5150.45 (16)C1—C18—C19—C20178.2 (2)
C12—C2—C3—O3104.29 (19)C23—C18—C19—C200.9 (3)
C12—C2—C3—C4152.28 (17)C1—C18—C23—C22179.0 (2)
C12—C2—C3—C51.5 (3)C19—C18—C23—C221.7 (3)
O3—C2—C12—C13121.7 (2)C18—C19—C20—C211.0 (4)
O3—C2—C12—C1760.0 (3)C19—C20—C21—F1177.8 (3)
C1—C2—C12—C1396.8 (2)C19—C20—C21—C222.2 (5)
C1—C2—C12—C1781.5 (2)F1—C21—C22—C23178.6 (3)
C3—C2—C12—C1351.3 (3)C20—C21—C22—C231.4 (5)
C3—C2—C12—C17130.4 (2)C21—C22—C23—C180.6 (4)
O3—C3—C4—O153.64 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.86 (2)2.36 (2)2.780 (2)110.8 (17)
N1—H1···O2i0.86 (2)2.37 (2)3.216 (2)168.0 (18)
O2—H2···O50.84 (2)2.15 (2)2.920 (2)152 (2)
O2—H2···O3ii0.84 (2)2.35 (2)2.8188 (18)116.1 (18)
O5—H5···O60.82001.99002.655 (2)138.00
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H24FNO6
Mr465.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.7560 (6), 11.7489 (6), 17.0889 (9)
β (°) 94.438 (2)
V3)2353.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.18 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
14754, 5340, 3008
Rint0.040
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.136, 1.02
No. of reflections5340
No. of parameters318
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.86 (2)2.36 (2)2.780 (2)110.8 (17)
N1—H1···O2i0.86 (2)2.37 (2)3.216 (2)168.0 (18)
O2—H2···O50.84 (2)2.15 (2)2.920 (2)152 (2)
O2—H2···O3ii0.84 (2)2.35 (2)2.8188 (18)116.1 (18)
O5—H5···O60.82001.99002.655 (2)138.00
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

MA gratefully acknowledges the Higher Education Commision, Islamabad, Pakistan, for providing him with a scholaship under the Indigenous PhD Program (PIN 042-120556-PS2-275).

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationUnited States Pharmacopeia (2007). United States Pharmacopoeia, 2nd ed. Rockville: United States Pharmacopial Convention.  Google Scholar
First citationRouleau, J. (2005). Am. J. Med. 118 (Suppl. 12A), 28–35.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds