organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,6-Di­oxo-1,10-phenanthrolin-1-ium tri­fluoro­methane­sulfonate

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 9 January 2008; accepted 30 May 2008; online 19 July 2008)

In the structure of the title salt, C12H7N2O2+·CF3SO3, the cation participates in hydrogen bonding with the dione group of an adjacent cation as well as with the trifluoro­methane­sulfonate anion. In addition, there is an extensive network of C—H⋯O inter­actions between the cations and anions. There are two formula units per asymmetric unit. The crystal studied exhibits inversion twinning.

Related literature

For literature on the coordinating ability of phendione, see: Calderazzo et al. (1999[Calderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). Dalton Trans. pp. 4389-4396.], 2002[Calderazzo, F., Pampaloni, G. & Passarelli, V. (2002). Inorg. Chim. Acta, 330, 136-142.]); Calucci et al. (2006[Calucci, L., Pampaloni, G., Pinzino, C. & Prescimone, A. (2006). Inorg. Chim. Acta, 359, 3911-3920.]); Fox et al. (1991[Fox, G. A., Bhattacharya, S. & Pierpont, C. G. (1991). Inorg. Chem. 30, 2895-2899.]); Galet et al. (2005[Galet, A., Munoz, M. C., Agusti, G., Martinez, V., Gaspar, A. B. & Real, J. A. (2005). Z. Anorg. Allg. Chem. 631, 1985-1987.]); Lei et al. (1996[Lei, Y., Shi, C. & Anson, F. C. (1996). Inorg. Chem. 35, 3044-3049.]); Okamura et al. (2006[Okamura, R., Fujihara, T., Wada, T. & Tanaka, K. (2006). Bull. Chem. Soc. Jpn, 79, 106-112.]); Paw & Eisenberg (1997[Paw, W. & Eisenberg, R. (1997). Inorg. Chem. 36, 2287-2293.]); Ruiz et al. (1999[Ruiz, R., Caneschi, A., Gatteschi, D., Gaspar, A. B., Real, J. A., Fernandez, I. & Munoz, M. C. (1999). Inorg. Chem. Commun. 2, 521-523.]); Shavaleev et al. (2003a[Shavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003a). Chem. Commun. pp. 1134-1135.],b[Shavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003b). Chem. Eur. J. 9, 5283-5291.]); Ma et al. (2002[Ma, G., Fischer, A. & Glaser, J. (2002). Eur. J. Inorg. Chem. pp. 1307-1314.]). For our own reports on phendione, see: Onuegbu et al. (2007[Onuegbu, J., Butcher, R. J., Hosten, C., Udeochu, U. C. & Bakare, O. (2007). Acta Cryst. E63, m2309-m2310.]); Udeochu et al. (2007[Udeochu, U., Jimerson, T., Vivoni, A., Bakare, O. & Hosten, C. M. (2007). J. Phys. Chem. A, 111, 3409-3415.]).

[Scheme 1]

Experimental

Crystal data
  • C12H7N2O2+·CF3O3S

  • Mr = 360.27

  • Monoclinic, P 21

  • a = 6.4896 (2) Å

  • b = 16.3963 (5) Å

  • c = 13.2430 (3) Å

  • β = 94.393 (2)°

  • V = 1404.99 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 200 (2) K

  • 0.51 × 0.22 × 0.18 mm

Data collection
  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (SCALE3 ABSPACK; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED, including SCALE3 ABSPACK. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.897, Tmax = 1.000 (expected range = 0.850–0.948)

  • 13319 measured reflections

  • 7960 independent reflections

  • 5208 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.076

  • S = 0.94

  • 7960 reflections

  • 434 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2713 Friedel pairs

  • Flack parameter: 0.40 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AB⋯O22 0.88 2.01 2.830 (2) 154
N1B—H1BB⋯O12 0.88 2.02 2.835 (2) 154

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED, including SCALE3 ABSPACK. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED, including SCALE3 ABSPACK. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phendione (1,10-phenanthroline-5,6-dione) is an excellent ligand that incorporates two functional groups with different coordination properties (Ma et al., 2002; Calderazzo et al., 1999, 2002; Calucci et al., 2006; Galet et al., 2005; Lei et al., 1996; Okamura et al., 2006). This well known ligand posssesses both the α-diimine and orthoquinone moieties. While phendione usually binds to metals through its imine N atoms, in some cases both the N and O donors are used simultaneously (Calderazzo et al., 1999; Fox et al., 1991; Shavaleev et al., 2003a,b; Ruiz et al., 1999; Paw & Eisenberg, 1997). In this paper as part of our study of phendione chemistry (Udeochu et al., 2007; Onuegbu et al., 2007) we report the synthesis and characterization of the trifluoromethanesulfonate salt of mono-protonated 1,10-phenanthroline-5,6-dione.

The structure consists of a mono-protonated phendione cation and a trifluoromethanesulfonate (CF3SO3-) anion. The CO bond lengths in the phendione cation (1.208 (2), 1.209 (2) and the metrical parameters involving the phendione N atoms are comparable in value to those found in neutral 1,10-phenanthroline-5,6-dione.

The N—H protons participate in hydrogen bonds with adjoining phendione cations. In addition there is an extensive network of weak C—H···O interactions to both phendione O and trifluoromethanesulfonate O atoms.

Related literature top

For literature on the coordinating ability of phendione, see: Calderazzo et al. (1999, 2002); Calucci et al. (2006); Fox et al. (1991); Galet et al. (2005); Lei et al. (1996); Okamura et al. (2006); Paw & Eisenberg (1997); Ruiz et al. (1999); Shavaleev et al. (2003a,b); Ma et al. (2002). For our own reports on phendione, see: Onuegbu et al. (2007); Udeochu et al. (2007).

Experimental top

A flask containing 1,10-phenanthroline hydrate (1.00 g, 5.04 mmol) and potassium bromide (5.95 g, 50.0 mmol) was placed in an ice bath. Concentrated sulfuric acid (20 ml) was added in small portions, followed by drop wise addition of concentrated nitric acid (10 ml). The resulting solution was heated for 2 h at 80–85° C and cooled to room temperature. The solution was then poured into 400 ml water and neutralized with sodium bicarbonate, after which the phendione was extracted with dichloromethane, and recrystallized using a methanol–water mixture.

The title compound was synthesized in an atmosphere saturated with N2. To a solution of silver trifluoromethanesulfonate (0.079 g) in 10 ml CH3CN (acidified to pH 2 using concentrated triflic acid), was added a solution (10 ml) of CH3CN containing 0.065 g of phendione (acidified to pH 2 using triflic acid). The final yellowish solution was filtered and allowed to slowly evaporate yield reddish brown crystals of the title compound.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distance of 0.95 Å and Uiso(H) = 1.2Ueq(C). The H atoms attached to N in the phendione cation were idealized with an N—H distance of 0.88 Å.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the two formula units in the asymmetric unit showing the atom-labeling scheme. Dotted lines indicate the hydrogen bonding interactions. Displacement ellipsoids are drawn at the 20% probability level.
[Figure 2] Fig. 2. The molecular packing of (I) viewed approximately along the b axis. Dotted lines indicate the hydrogen bonding interactions.
5,6-Dioxo-1,10-phenanthrolin-1-ium trifluoromethanesulfonate top
Crystal data top
C12H7N2O2+·CF3O3SF(000) = 728
Mr = 360.27Dx = 1.703 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.4896 (2) ÅCell parameters from 5857 reflections
b = 16.3963 (5) Åθ = 4.7–32.5°
c = 13.2430 (3) ŵ = 0.30 mm1
β = 94.393 (2)°T = 200 K
V = 1404.99 (7) Å3Needle, yellow-orange
Z = 40.51 × 0.22 × 0.18 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
7960 independent reflections
Radiation source: fine-focus sealed tube5208 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.5081 pixels mm-1θmax = 32.5°, θmin = 4.7°
ϕ and ω scansh = 97
Absorption correction: multi-scan
[Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2007)]
k = 2421
Tmin = 0.897, Tmax = 1.000l = 1919
13319 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0394P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.001
7960 reflectionsΔρmax = 0.24 e Å3
434 parametersΔρmin = 0.38 e Å3
1 restraintAbsolute structure: Flack (1983), with 2713 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.40 (5)
Crystal data top
C12H7N2O2+·CF3O3SV = 1404.99 (7) Å3
Mr = 360.27Z = 4
Monoclinic, P21Mo Kα radiation
a = 6.4896 (2) ŵ = 0.30 mm1
b = 16.3963 (5) ÅT = 200 K
c = 13.2430 (3) Å0.51 × 0.22 × 0.18 mm
β = 94.393 (2)°
Data collection top
Oxford Diffraction Gemini
diffractometer
7960 independent reflections
Absorption correction: multi-scan
[Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2007)]
5208 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 1.000Rint = 0.023
13319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.24 e Å3
S = 0.94Δρmin = 0.38 e Å3
7960 reflectionsAbsolute structure: Flack (1983), with 2713 Friedel pairs
434 parametersAbsolute structure parameter: 0.40 (5)
1 restraint
Special details top

Experimental. The data were measured to a 2θ limit of 50 °, but the low completeness was caused by

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.64118 (7)0.25922 (3)0.84492 (4)0.02642 (11)
S20.86022 (7)0.38484 (3)0.23321 (3)0.02618 (11)
F110.7237 (3)0.10424 (9)0.86156 (13)0.0732 (5)
F120.9730 (2)0.17770 (11)0.81474 (14)0.0735 (5)
F130.7153 (2)0.14825 (10)0.70995 (11)0.0604 (4)
F210.7945 (2)0.49049 (10)0.37563 (11)0.0648 (4)
F220.7727 (3)0.54033 (10)0.22511 (15)0.0759 (5)
F230.5298 (2)0.46511 (10)0.27365 (13)0.0636 (4)
O110.7135 (2)0.26580 (11)0.94979 (10)0.0419 (4)
O120.7202 (2)0.32177 (10)0.78073 (11)0.0340 (3)
O130.4246 (2)0.24330 (10)0.82584 (11)0.0376 (4)
O211.0772 (2)0.40075 (10)0.25085 (11)0.0390 (4)
O220.7848 (2)0.32033 (9)0.29570 (11)0.0346 (4)
O230.7822 (2)0.38146 (11)0.12885 (10)0.0422 (4)
O1A0.2484 (2)0.12049 (10)0.20079 (13)0.0400 (4)
O2A0.2548 (2)0.12362 (10)0.40583 (13)0.0457 (4)
O1B1.7556 (2)0.51876 (9)0.87690 (12)0.0386 (4)
O2B1.7531 (2)0.52437 (10)0.67146 (12)0.0431 (4)
N1A0.4031 (2)0.24850 (11)0.22669 (12)0.0254 (4)
H1AB0.50450.26920.26660.030*
N2A0.4147 (3)0.24527 (12)0.42945 (13)0.0319 (4)
N1B1.1004 (2)0.39478 (11)0.85110 (12)0.0258 (4)
H1BB1.00120.37230.81150.031*
N2B1.0923 (3)0.39406 (12)0.64828 (13)0.0327 (4)
C10.7697 (4)0.16729 (15)0.80584 (17)0.0387 (6)
C20.7337 (4)0.47486 (15)0.27958 (18)0.0402 (6)
C1A0.4191 (3)0.25021 (14)0.12634 (15)0.0314 (5)
H1AA0.53840.27290.09990.038*
C2A0.2629 (3)0.21907 (14)0.06179 (17)0.0322 (5)
H2AA0.27370.21970.00930.039*
C3A0.0900 (3)0.18683 (13)0.10145 (17)0.0301 (5)
H3AA0.02020.16580.05770.036*
C4A0.0781 (3)0.18525 (12)0.20630 (15)0.0241 (4)
C5A0.1030 (3)0.14900 (13)0.25125 (17)0.0289 (5)
C6A0.1038 (3)0.14924 (13)0.36802 (17)0.0315 (5)
C7A0.0806 (3)0.18109 (13)0.42748 (16)0.0288 (5)
C8A0.0996 (4)0.17678 (15)0.53295 (16)0.0389 (5)
H8AA0.00780.15350.56840.047*
C9A0.2741 (4)0.20637 (15)0.58490 (18)0.0444 (6)
H9AA0.29010.20380.65670.053*
C10A0.4267 (4)0.23999 (16)0.53074 (17)0.0432 (6)
H10B0.54720.26060.56740.052*
C11A0.2440 (3)0.21495 (12)0.37991 (15)0.0246 (4)
C12A0.2397 (3)0.21671 (12)0.26908 (15)0.0216 (4)
C1B1.0812 (3)0.39649 (13)0.95094 (14)0.0286 (4)
H1BA0.96130.37420.97740.034*
C2B1.2347 (3)0.43041 (13)1.01586 (15)0.0318 (5)
H2BA1.22030.43291.08660.038*
C3B1.4085 (3)0.46050 (13)0.97591 (15)0.0305 (5)
H3BA1.51800.48241.01940.037*
C4B1.4242 (3)0.45896 (12)0.87118 (15)0.0245 (4)
C5B1.6077 (3)0.49192 (13)0.82586 (16)0.0284 (5)
C6B1.6070 (3)0.49306 (13)0.70872 (16)0.0303 (5)
C7B1.4283 (3)0.45768 (13)0.65019 (15)0.0289 (5)
C8B1.4144 (4)0.45842 (15)0.54424 (17)0.0393 (6)
H8BA1.52390.47970.50850.047*
C9B1.2398 (4)0.42780 (16)0.49305 (17)0.0463 (7)
H9BA1.22550.42830.42110.056*
C10B1.0845 (4)0.39614 (16)0.54748 (17)0.0400 (6)
H10A0.96520.37460.51080.048*
C11B1.2622 (3)0.42491 (13)0.69772 (16)0.0271 (5)
C12B1.2647 (3)0.42594 (12)0.80881 (15)0.0240 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0252 (2)0.0305 (3)0.0237 (2)0.0019 (2)0.00264 (19)0.0019 (2)
S20.0248 (2)0.0314 (3)0.0226 (2)0.0042 (2)0.00331 (18)0.0024 (2)
F110.1143 (14)0.0318 (9)0.0735 (11)0.0060 (8)0.0075 (10)0.0159 (8)
F120.0368 (8)0.0750 (12)0.1081 (14)0.0217 (7)0.0024 (9)0.0140 (11)
F130.0798 (11)0.0579 (11)0.0435 (8)0.0118 (8)0.0049 (8)0.0213 (8)
F210.0776 (10)0.0674 (11)0.0500 (9)0.0049 (8)0.0100 (8)0.0305 (8)
F220.0961 (13)0.0334 (9)0.1013 (14)0.0024 (8)0.0285 (10)0.0186 (9)
F230.0363 (8)0.0633 (11)0.0922 (12)0.0136 (7)0.0116 (8)0.0001 (9)
O110.0484 (9)0.0540 (10)0.0229 (7)0.0107 (8)0.0002 (6)0.0049 (8)
O120.0317 (8)0.0321 (8)0.0381 (9)0.0046 (6)0.0024 (6)0.0069 (7)
O130.0217 (7)0.0516 (11)0.0399 (8)0.0076 (6)0.0049 (6)0.0031 (7)
O210.0282 (8)0.0530 (11)0.0364 (8)0.0054 (7)0.0052 (6)0.0039 (8)
O220.0327 (8)0.0309 (8)0.0404 (9)0.0049 (6)0.0029 (7)0.0057 (7)
O230.0457 (9)0.0574 (11)0.0230 (7)0.0121 (8)0.0003 (6)0.0062 (8)
O1A0.0307 (9)0.0350 (9)0.0533 (10)0.0088 (7)0.0043 (8)0.0005 (8)
O2A0.0434 (9)0.0411 (10)0.0555 (10)0.0126 (7)0.0222 (8)0.0002 (8)
O1B0.0320 (8)0.0346 (9)0.0485 (9)0.0093 (7)0.0009 (7)0.0006 (8)
O2B0.0392 (9)0.0411 (10)0.0517 (10)0.0075 (7)0.0203 (8)0.0029 (8)
N1A0.0210 (8)0.0285 (10)0.0262 (9)0.0027 (7)0.0010 (7)0.0005 (8)
N2A0.0312 (9)0.0345 (11)0.0293 (9)0.0017 (8)0.0032 (7)0.0019 (8)
N1B0.0229 (8)0.0292 (10)0.0253 (8)0.0002 (7)0.0029 (7)0.0010 (8)
N2B0.0330 (9)0.0372 (11)0.0271 (9)0.0027 (8)0.0025 (7)0.0025 (9)
C10.0394 (13)0.0381 (15)0.0387 (13)0.0038 (10)0.0031 (10)0.0039 (11)
C20.0443 (14)0.0356 (14)0.0419 (14)0.0010 (10)0.0107 (11)0.0003 (11)
C1A0.0306 (11)0.0344 (13)0.0300 (11)0.0026 (9)0.0079 (9)0.0066 (11)
C2A0.0375 (13)0.0355 (13)0.0238 (11)0.0049 (9)0.0041 (9)0.0040 (10)
C3A0.0310 (11)0.0265 (12)0.0319 (12)0.0017 (8)0.0045 (10)0.0019 (9)
C4A0.0271 (11)0.0184 (10)0.0266 (10)0.0017 (8)0.0019 (9)0.0005 (8)
C5A0.0258 (11)0.0200 (11)0.0417 (13)0.0024 (8)0.0073 (9)0.0004 (10)
C6A0.0356 (12)0.0199 (11)0.0403 (12)0.0027 (9)0.0101 (9)0.0012 (9)
C7A0.0334 (11)0.0234 (11)0.0302 (11)0.0021 (8)0.0058 (9)0.0007 (9)
C8A0.0489 (14)0.0395 (13)0.0301 (12)0.0058 (11)0.0155 (10)0.0058 (10)
C9A0.0619 (17)0.0460 (16)0.0253 (11)0.0075 (12)0.0035 (11)0.0035 (11)
C10A0.0506 (14)0.0438 (16)0.0331 (12)0.0044 (11)0.0100 (11)0.0022 (11)
C11A0.0258 (10)0.0240 (11)0.0240 (10)0.0009 (8)0.0027 (8)0.0020 (9)
C12A0.0198 (10)0.0210 (11)0.0247 (10)0.0019 (7)0.0063 (8)0.0006 (9)
C1B0.0270 (10)0.0299 (12)0.0297 (10)0.0019 (8)0.0070 (8)0.0036 (10)
C2B0.0400 (12)0.0339 (12)0.0215 (10)0.0014 (9)0.0024 (9)0.0033 (9)
C3B0.0341 (11)0.0292 (12)0.0271 (11)0.0014 (8)0.0056 (9)0.0014 (9)
C4B0.0253 (10)0.0209 (10)0.0272 (11)0.0042 (8)0.0009 (9)0.0025 (9)
C5B0.0277 (11)0.0211 (11)0.0361 (11)0.0032 (8)0.0011 (9)0.0037 (9)
C6B0.0322 (12)0.0242 (12)0.0357 (12)0.0060 (9)0.0106 (9)0.0037 (10)
C7B0.0350 (12)0.0272 (11)0.0253 (10)0.0061 (8)0.0078 (9)0.0045 (9)
C8B0.0535 (15)0.0378 (13)0.0282 (12)0.0080 (11)0.0137 (11)0.0028 (11)
C9B0.0656 (18)0.0520 (16)0.0208 (11)0.0117 (13)0.0006 (12)0.0013 (11)
C10B0.0466 (13)0.0407 (15)0.0312 (12)0.0047 (11)0.0072 (10)0.0047 (11)
C11B0.0315 (11)0.0258 (11)0.0243 (10)0.0066 (9)0.0033 (9)0.0019 (9)
C12B0.0241 (10)0.0209 (11)0.0270 (10)0.0053 (8)0.0008 (8)0.0033 (9)
Geometric parameters (Å, º) top
S1—O131.4330 (14)C3A—C4A1.397 (3)
S1—O111.4355 (15)C3A—H3AA0.9500
S1—O121.4507 (16)C4A—C12A1.387 (3)
S1—C11.817 (2)C4A—C5A1.482 (3)
S2—O211.4337 (14)C5A—C6A1.547 (3)
S2—O231.4362 (14)C6A—C7A1.477 (3)
S2—O221.4509 (16)C7A—C11A1.390 (3)
S2—C21.819 (2)C7A—C8A1.394 (3)
F11—C11.318 (3)C8A—C9A1.369 (3)
F12—C11.327 (3)C8A—H8AA0.9500
F13—C11.329 (3)C9A—C10A1.381 (4)
F21—C21.328 (3)C9A—H9AA0.9500
F22—C21.328 (3)C10A—H10B0.9500
F23—C21.329 (3)C11A—C12A1.466 (3)
O1A—C5A1.208 (2)C1B—C2B1.382 (3)
O2A—C6A1.209 (2)C1B—H1BA0.9500
O1B—C5B1.214 (2)C2B—C3B1.374 (3)
O2B—C6B1.216 (2)C2B—H2BA0.9500
N1A—C1A1.341 (3)C3B—C4B1.399 (3)
N1A—C12A1.343 (2)C3B—H3BA0.9500
N1A—H1AB0.8800C4B—C12B1.384 (3)
N2A—C11A1.339 (2)C4B—C5B1.476 (3)
N2A—C10A1.340 (3)C5B—C6B1.551 (3)
N1B—C1B1.338 (2)C6B—C7B1.464 (3)
N1B—C12B1.343 (3)C7B—C11B1.396 (3)
N1B—H1BB0.8800C7B—C8B1.399 (3)
N2B—C10B1.332 (3)C8B—C9B1.371 (3)
N2B—C11B1.338 (3)C8B—H8BA0.9500
C1A—C2A1.373 (3)C9B—C10B1.384 (3)
C1A—H1AA0.9500C9B—H9BA0.9500
C2A—C3A1.380 (3)C10B—H10A0.9500
C2A—H2AA0.9500C11B—C12B1.470 (3)
O13—S1—O11115.34 (9)C8A—C7A—C6A121.5 (2)
O13—S1—O12114.30 (9)C9A—C8A—C7A119.5 (2)
O11—S1—O12114.19 (9)C9A—C8A—H8AA120.3
O13—S1—C1105.30 (10)C7A—C8A—H8AA120.3
O11—S1—C1102.40 (10)C8A—C9A—C10A118.6 (2)
O12—S1—C1103.23 (10)C8A—C9A—H9AA120.7
O21—S2—O23115.69 (9)C10A—C9A—H9AA120.7
O21—S2—O22114.19 (9)N2A—C10A—C9A123.8 (2)
O23—S2—O22114.28 (9)N2A—C10A—H10B118.1
O21—S2—C2105.11 (11)C9A—C10A—H10B118.1
O23—S2—C2102.77 (11)N2A—C11A—C7A123.88 (19)
O22—S2—C2102.61 (10)N2A—C11A—C12A115.77 (18)
C1A—N1A—C12A123.07 (17)C7A—C11A—C12A120.33 (17)
C1A—N1A—H1AB118.5N1A—C12A—C4A118.63 (17)
C12A—N1A—H1AB118.5N1A—C12A—C11A118.10 (16)
C11A—N2A—C10A116.7 (2)C4A—C12A—C11A123.25 (17)
C1B—N1B—C12B122.78 (17)N1B—C1B—C2B120.40 (18)
C1B—N1B—H1BB118.6N1B—C1B—H1BA119.8
C12B—N1B—H1BB118.6C2B—C1B—H1BA119.8
C10B—N2B—C11B116.6 (2)C3B—C2B—C1B118.62 (19)
F11—C1—F12108.5 (2)C3B—C2B—H2BA120.7
F11—C1—F13107.22 (19)C1B—C2B—H2BA120.7
F12—C1—F13107.7 (2)C2B—C3B—C4B119.98 (19)
F11—C1—S1111.27 (16)C2B—C3B—H3BA120.0
F12—C1—S1110.05 (16)C4B—C3B—H3BA120.0
F13—C1—S1111.92 (16)C12B—C4B—C3B119.40 (19)
F21—C2—F22108.0 (2)C12B—C4B—C5B119.35 (18)
F21—C2—F23107.5 (2)C3B—C4B—C5B121.25 (18)
F22—C2—F23107.18 (19)O1B—C5B—C4B122.31 (19)
F21—C2—S2111.81 (17)O1B—C5B—C6B119.62 (18)
F22—C2—S2111.26 (16)C4B—C5B—C6B118.06 (17)
F23—C2—S2110.84 (16)O2B—C6B—C7B124.3 (2)
N1A—C1A—C2A119.98 (19)O2B—C6B—C5B117.92 (19)
N1A—C1A—H1AA120.0C7B—C6B—C5B117.79 (18)
C2A—C1A—H1AA120.0C11B—C7B—C8B117.6 (2)
C1A—C2A—C3A119.2 (2)C11B—C7B—C6B121.40 (19)
C1A—C2A—H2AA120.4C8B—C7B—C6B121.0 (2)
C3A—C2A—H2AA120.4C9B—C8B—C7B118.7 (2)
C2A—C3A—C4A119.6 (2)C9B—C8B—H8BA120.7
C2A—C3A—H3AA120.2C7B—C8B—H8BA120.7
C4A—C3A—H3AA120.2C8B—C9B—C10B119.2 (2)
C12A—C4A—C3A119.47 (18)C8B—C9B—H9BA120.4
C12A—C4A—C5A119.66 (18)C10B—C9B—H9BA120.4
C3A—C4A—C5A120.85 (19)N2B—C10B—C9B123.9 (2)
O1A—C5A—C4A122.9 (2)N2B—C10B—H10A118.0
O1A—C5A—C6A119.47 (19)C9B—C10B—H10A118.0
C4A—C5A—C6A117.65 (18)N2B—C11B—C7B124.1 (2)
O2A—C6A—C7A123.4 (2)N2B—C11B—C12B116.08 (19)
O2A—C6A—C5A118.55 (19)C7B—C11B—C12B119.79 (18)
C7A—C6A—C5A118.00 (18)N1B—C12B—C4B118.77 (18)
C11A—C7A—C8A117.5 (2)N1B—C12B—C11B117.69 (17)
C11A—C7A—C6A120.98 (19)C4B—C12B—C11B123.52 (18)
O13—S1—C1—F1163.50 (18)C1A—N1A—C12A—C11A177.25 (18)
O11—S1—C1—F1157.46 (18)C3A—C4A—C12A—N1A0.5 (3)
O12—S1—C1—F11176.32 (16)C5A—C4A—C12A—N1A179.33 (19)
O13—S1—C1—F12176.18 (16)C3A—C4A—C12A—C11A177.69 (18)
O11—S1—C1—F1262.86 (19)C5A—C4A—C12A—C11A1.1 (3)
O12—S1—C1—F1256.00 (19)N2A—C11A—C12A—N1A0.5 (3)
O13—S1—C1—F1356.44 (19)C7A—C11A—C12A—N1A178.6 (2)
O11—S1—C1—F13177.40 (16)N2A—C11A—C12A—C4A177.71 (19)
O12—S1—C1—F1363.74 (19)C7A—C11A—C12A—C4A0.4 (3)
O21—S2—C2—F2155.78 (19)C12B—N1B—C1B—C2B0.7 (3)
O23—S2—C2—F21177.22 (16)N1B—C1B—C2B—C3B1.4 (3)
O22—S2—C2—F2163.91 (19)C1B—C2B—C3B—C4B2.2 (3)
O21—S2—C2—F2265.10 (18)C2B—C3B—C4B—C12B0.9 (3)
O23—S2—C2—F2256.34 (18)C2B—C3B—C4B—C5B179.1 (2)
O22—S2—C2—F22175.21 (16)C12B—C4B—C5B—O1B177.13 (19)
O21—S2—C2—F23175.74 (16)C3B—C4B—C5B—O1B2.9 (3)
O23—S2—C2—F2362.82 (18)C12B—C4B—C5B—C6B3.9 (3)
O22—S2—C2—F2356.05 (18)C3B—C4B—C5B—C6B176.08 (17)
C12A—N1A—C1A—C2A0.5 (3)O1B—C5B—C6B—O2B3.0 (3)
N1A—C1A—C2A—C3A0.5 (3)C4B—C5B—C6B—O2B176.0 (2)
C1A—C2A—C3A—C4A1.0 (3)O1B—C5B—C6B—C7B178.08 (19)
C2A—C3A—C4A—C12A0.5 (3)C4B—C5B—C6B—C7B2.9 (3)
C2A—C3A—C4A—C5A178.3 (2)O2B—C6B—C7B—C11B177.9 (2)
C12A—C4A—C5A—O1A179.9 (2)C5B—C6B—C7B—C11B0.9 (3)
C3A—C4A—C5A—O1A1.0 (3)O2B—C6B—C7B—C8B0.5 (3)
C12A—C4A—C5A—C6A0.9 (3)C5B—C6B—C7B—C8B178.34 (19)
C3A—C4A—C5A—C6A179.67 (18)C11B—C7B—C8B—C9B0.5 (3)
O1A—C5A—C6A—O2A2.9 (3)C6B—C7B—C8B—C9B177.1 (2)
C4A—C5A—C6A—O2A176.4 (2)C7B—C8B—C9B—C10B0.9 (4)
O1A—C5A—C6A—C7A177.2 (2)C11B—N2B—C10B—C9B0.0 (4)
C4A—C5A—C6A—C7A3.5 (3)C8B—C9B—C10B—N2B0.7 (4)
O2A—C6A—C7A—C11A175.5 (2)C10B—N2B—C11B—C7B0.6 (3)
C5A—C6A—C7A—C11A4.3 (3)C10B—N2B—C11B—C12B177.13 (18)
O2A—C6A—C7A—C8A5.9 (3)C8B—C7B—C11B—N2B0.3 (3)
C5A—C6A—C7A—C8A174.27 (19)C6B—C7B—C11B—N2B177.9 (2)
C11A—C7A—C8A—C9A0.7 (3)C8B—C7B—C11B—C12B177.29 (18)
C6A—C7A—C8A—C9A179.4 (2)C6B—C7B—C11B—C12B0.3 (3)
C7A—C8A—C9A—C10A0.2 (4)C1B—N1B—C12B—C4B2.1 (3)
C11A—N2A—C10A—C9A0.7 (4)C1B—N1B—C12B—C11B176.33 (18)
C8A—C9A—C10A—N2A0.2 (4)C3B—C4B—C12B—N1B1.3 (3)
C10A—N2A—C11A—C7A1.7 (3)C5B—C4B—C12B—N1B178.77 (18)
C10A—N2A—C11A—C12A176.33 (18)C3B—C4B—C12B—C11B177.07 (17)
C8A—C7A—C11A—N2A1.8 (3)C5B—C4B—C12B—C11B2.9 (3)
C6A—C7A—C11A—N2A179.60 (19)N2B—C11B—C12B—N1B1.3 (3)
C8A—C7A—C11A—C12A176.19 (18)C7B—C11B—C12B—N1B179.1 (2)
C6A—C7A—C11A—C12A2.4 (3)N2B—C11B—C12B—C4B177.06 (19)
C1A—N1A—C12A—C4A1.0 (3)C7B—C11B—C12B—C4B0.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AB···O220.882.012.830 (2)154
N1B—H1BB···O120.882.022.835 (2)154
C1A—H1AA···O11i0.952.373.141 (3)138
C1A—H1AA···O230.952.393.190 (3)141
C1B—H1BA···O110.952.413.206 (3)142
C1B—H1BA···O23ii0.952.403.175 (2)139
C2A—H2AA···O13i0.952.493.395 (3)159
C9A—H9AA···O130.952.433.320 (3)156
C2B—H2BA···O21ii0.952.493.384 (3)158
C9B—H9BA···O210.952.433.328 (3)159
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H7N2O2+·CF3O3S
Mr360.27
Crystal system, space groupMonoclinic, P21
Temperature (K)200
a, b, c (Å)6.4896 (2), 16.3963 (5), 13.2430 (3)
β (°) 94.393 (2)
V3)1404.99 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.51 × 0.22 × 0.18
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionMulti-scan
[Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2007)]
Tmin, Tmax0.897, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13319, 7960, 5208
Rint0.023
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.077, 0.94
No. of reflections7960
No. of parameters434
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.38
Absolute structureFlack (1983), with 2713 Friedel pairs
Absolute structure parameter0.40 (5)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AB···O220.882.012.830 (2)154
N1B—H1BB···O120.882.022.835 (2)154
 

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the X-ray diffractometer.

References

First citationCalderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). Dalton Trans. pp. 4389–4396.  CSD CrossRef Google Scholar
First citationCalderazzo, F., Pampaloni, G. & Passarelli, V. (2002). Inorg. Chim. Acta, 330, 136–142.  Web of Science CrossRef CAS Google Scholar
First citationCalucci, L., Pampaloni, G., Pinzino, C. & Prescimone, A. (2006). Inorg. Chim. Acta, 359, 3911–3920.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFox, G. A., Bhattacharya, S. & Pierpont, C. G. (1991). Inorg. Chem. 30, 2895–2899.  CSD CrossRef CAS Web of Science Google Scholar
First citationGalet, A., Munoz, M. C., Agusti, G., Martinez, V., Gaspar, A. B. & Real, J. A. (2005). Z. Anorg. Allg. Chem. 631, 1985–1987.  Web of Science CSD CrossRef CAS Google Scholar
First citationLei, Y., Shi, C. & Anson, F. C. (1996). Inorg. Chem. 35, 3044–3049.  CrossRef CAS Web of Science Google Scholar
First citationMa, G., Fischer, A. & Glaser, J. (2002). Eur. J. Inorg. Chem. pp. 1307–1314.  CrossRef Google Scholar
First citationOkamura, R., Fujihara, T., Wada, T. & Tanaka, K. (2006). Bull. Chem. Soc. Jpn, 79, 106–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationOnuegbu, J., Butcher, R. J., Hosten, C., Udeochu, U. C. & Bakare, O. (2007). Acta Cryst. E63, m2309–m2310.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED, including SCALE3 ABSPACK. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPaw, W. & Eisenberg, R. (1997). Inorg. Chem. 36, 2287–2293.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationRuiz, R., Caneschi, A., Gatteschi, D., Gaspar, A. B., Real, J. A., Fernandez, I. & Munoz, M. C. (1999). Inorg. Chem. Commun. 2, 521–523.  Web of Science CSD CrossRef CAS Google Scholar
First citationShavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003a). Chem. Commun. pp. 1134–1135.  Web of Science CSD CrossRef Google Scholar
First citationShavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003b). Chem. Eur. J. 9, 5283–5291.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUdeochu, U., Jimerson, T., Vivoni, A., Bakare, O. & Hosten, C. M. (2007). J. Phys. Chem. A, 111, 3409–3415.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds