organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-(Butane-1,4-di­yl)di­imidazole-1,1′-diium bis­­(triiodide)

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 9 June 2008; accepted 17 July 2008; online 19 July 2008)

The cations and anions of the salt, C10H16N42+·2I3, are linked by N—H⋯I hydrogen bonds and ππ stacking inter­actions(with interplanar distances of 3.575 and 3.528 Å) into a three-dimensional supra­molecular network. The asymmetric unit contains two anions and two half-cations; each cation is centrosymmetric.

Related literature

For literature on 1,1′-(1,4-butanedi­yl)diimidazole, see: Ma et al. (2003[Ma, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531-7534.]). For the structure of another 1,1′-(1,4-butanedi­yl)diimidazole-3,3′-diium salt, see: Yu et al. (2008[Yu, Y.-H., Shi, A.-E., Su, Y., Hou, G.-F. & Gao, J.-S. (2008). Acta Cryst. E64, m628.]).

[Scheme 1]

Experimental

Crystal data
  • C10H16N42+·2I3

  • Mr = 953.67

  • Triclinic, [P \overline 1]

  • a = 8.4753 (17) Å

  • b = 9.7177 (19) Å

  • c = 14.110 (3) Å

  • α = 95.77 (3)°

  • β = 92.82 (3)°

  • γ = 107.17 (3)°

  • V = 1100.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.46 mm−1

  • T = 291 (2) K

  • 0.21 × 0.20 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.266, Tmax = 0.306 (expected range = 0.189–0.218)

  • 8492 measured reflections

  • 3831 independent reflections

  • 3045 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.087

  • S = 1.10

  • 3831 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H11⋯I3i 0.85 3.14 3.690 (9) 124
N2—H11⋯I1ii 0.85 2.99 3.666 (9) 138
N4—H3⋯I1iii 0.86 3.25 3.714 (9) 116
N4—H3⋯I6iv 0.86 3.03 3.679 (8) 134
Symmetry codes: (i) x+1, y+1, z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The 1,1'-(1,4-butanediyl)diimidazole can be used as a flexible ligand to construct coordination polymer materials (Ma et al., 2003; Yu et al., 2008). In our attempt to synthesize the copper(I) iodide complex with the 1,1'-(1,4-butanediyl)diimidazole, we unexpectedly obtained the title compound (I). Herein, we report its crystal structure.

The asymmetric unit of (I) consists of two halfs of two independent centrosymmetric molecules of 1,1'-(1,4-Butanediyl)diimidazole-3,3'-diium cation and two triiodide anions (Figure 1). The remarkable π-π stacking interactions are observed, with the distance between the π-π stacking planes are 3.575 Å (cations); 3.528 Å (Figure 2),

In the crystal, intermolecular N—H···I, C—H···I hydrogen bonds and π-π stacking interactions link all cations and anions into three-dimensional supramolecular network (Table 1).

Related literature top

For literature on 1,1'-(1,4-butanediyl)diimidazole, see: Ma et al. (2003). For the structure of another 1,1'-(1,4-butanediyl)diimidazole-3,3'-diium salt, see: Yu et al. (2008).

Experimental top

1,1'-(1,4-Butanediyl)diimidazole was prepared of imidazole and 1,4-dibromobutane in dimethylsulfoxide solution (Ma et al.., 2003). CuI (0.380 g, 2 mmol) and 1,1'-(1,4-butanediyl)diimidazole (0.380 g, 2 mmol) were dissolved in hot methanol solution (15 ml) and added two drops hydrochloric acid then a clear solution was obtained. The resulting solution was allowed to stand in a desiccator at room temperature for several days. Yellow crystals of (I) were obtained. Unexpectedly, the salt-type adducts of this ligands was crystallized from solution.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (Caromatic); C—H = 0.97 Å (methylene) and with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located in a difference Fourier map and refined with N—H = 0.85 Å, Uiso(H) = 1.2Ueq(N). The final different Fourier map had a large peak in the vicinity of the iodine atoms.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. A partial packing view, showing π-π interactions. Dashed lines indicate the hydrogen-bonding interactions and π-π interactions. H atoms not involved in hydrogen bonds have been omitted for clarity.
3,3'-(Butane-1,4-diyl)diimidazole-1,1'-diium bis(triiodide) top
Crystal data top
C10H16N42+·2I3Z = 2
Mr = 953.67F(000) = 844
Triclinic, P1Dx = 2.877 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4753 (17) ÅCell parameters from 7434 reflections
b = 9.7177 (19) Åθ = 3.0–27.5°
c = 14.110 (3) ŵ = 8.46 mm1
α = 95.77 (3)°T = 291 K
β = 92.82 (3)°Block, yellow
γ = 107.17 (3)°0.21 × 0.20 × 0.18 mm
V = 1100.9 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3831 independent reflections
Radiation source: fine-focus sealed tube3045 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.266, Tmax = 0.307k = 1111
8492 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0254P)2 + 5.2161P]
where P = (Fo2 + 2Fc2)/3
3831 reflections(Δ/σ)max = 0.001
178 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
C10H16N42+·2I3γ = 107.17 (3)°
Mr = 953.67V = 1100.9 (4) Å3
Triclinic, P1Z = 2
a = 8.4753 (17) ÅMo Kα radiation
b = 9.7177 (19) ŵ = 8.46 mm1
c = 14.110 (3) ÅT = 291 K
α = 95.77 (3)°0.21 × 0.20 × 0.18 mm
β = 92.82 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3831 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3045 reflections with I > 2σ(I)
Tmin = 0.266, Tmax = 0.307Rint = 0.031
8492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.10Δρmax = 1.19 e Å3
3831 reflectionsΔρmin = 0.86 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6046 (11)0.3684 (10)0.5506 (6)0.049 (2)
H10.71420.38300.53690.058*
C20.5511 (12)0.4469 (11)0.6176 (7)0.055 (2)
H20.61590.52680.65850.066*
C30.3377 (12)0.2777 (12)0.5469 (7)0.056 (2)
H40.22930.21910.53050.067*
C40.4772 (13)0.1552 (11)0.4282 (6)0.057 (3)
H60.54580.20280.38080.069*
H50.36640.10900.39770.069*
C50.5466 (12)0.0400 (11)0.4628 (7)0.062 (3)
H80.54740.02930.40850.075*
H70.66050.08600.48840.075*
C61.0068 (12)0.3316 (11)0.1048 (7)0.055 (2)
H90.93620.29150.14990.066*
C71.1312 (11)0.4573 (11)0.1195 (8)0.057 (3)
H101.16360.52080.17580.068*
C81.1230 (13)0.3611 (11)0.0302 (7)0.056 (3)
H121.14900.34770.09300.067*
C90.8858 (8)0.1352 (8)0.0341 (6)0.055 (2)
H130.89750.12780.10230.066*
H140.77340.13580.02470.066*
C100.9139 (8)0.0029 (8)0.0049 (6)0.079 (4)
H150.89230.00550.07180.094*
H160.83640.08440.02930.094*
I10.55146 (9)0.37444 (7)0.15451 (5)0.05732 (19)
I20.54230 (7)0.06704 (6)0.16015 (4)0.04222 (15)
I30.53942 (8)0.22804 (7)0.16387 (5)0.0602 (2)
I40.96410 (8)0.34498 (8)0.37380 (5)0.0608 (2)
I50.99004 (7)0.05335 (7)0.33765 (4)0.05118 (17)
I61.03499 (9)0.23842 (8)0.31071 (5)0.0636 (2)
N11.0024 (9)0.2733 (8)0.0121 (5)0.0471 (18)
N21.1981 (10)0.4712 (9)0.0356 (6)0.060 (2)
H111.29060.52580.02110.072*
N30.4708 (8)0.2639 (8)0.5063 (5)0.0443 (17)
N40.3853 (10)0.3886 (9)0.6146 (6)0.058 (2)
H30.31110.40940.64800.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (5)0.053 (6)0.048 (5)0.005 (4)0.007 (4)0.002 (5)
C20.054 (6)0.052 (6)0.049 (6)0.006 (5)0.003 (5)0.002 (5)
C30.050 (6)0.068 (7)0.052 (6)0.021 (5)0.009 (5)0.007 (5)
C40.062 (6)0.074 (7)0.038 (5)0.027 (6)0.005 (5)0.001 (5)
C50.060 (6)0.063 (7)0.067 (7)0.023 (6)0.017 (5)0.002 (5)
C60.052 (6)0.067 (7)0.049 (6)0.026 (6)0.004 (5)0.003 (5)
C70.039 (5)0.049 (6)0.072 (7)0.005 (5)0.010 (5)0.012 (5)
C80.067 (6)0.061 (7)0.050 (6)0.034 (6)0.006 (5)0.011 (5)
C90.051 (5)0.045 (6)0.060 (6)0.003 (5)0.006 (5)0.006 (5)
C100.056 (6)0.037 (6)0.121 (10)0.018 (5)0.001 (7)0.009 (6)
I10.0714 (4)0.0472 (4)0.0598 (4)0.0265 (3)0.0108 (3)0.0079 (3)
I20.0397 (3)0.0447 (3)0.0383 (3)0.0090 (3)0.0015 (2)0.0012 (2)
I30.0601 (4)0.0393 (4)0.0767 (5)0.0106 (3)0.0034 (3)0.0040 (3)
I40.0584 (4)0.0562 (4)0.0616 (4)0.0098 (3)0.0076 (3)0.0007 (3)
I50.0415 (3)0.0630 (4)0.0443 (3)0.0107 (3)0.0010 (3)0.0020 (3)
I60.0660 (4)0.0729 (5)0.0604 (4)0.0338 (4)0.0089 (3)0.0062 (4)
N10.051 (4)0.048 (5)0.049 (5)0.022 (4)0.004 (4)0.014 (4)
N20.049 (5)0.061 (6)0.075 (6)0.024 (4)0.006 (5)0.017 (5)
N30.040 (4)0.048 (5)0.043 (4)0.009 (4)0.003 (3)0.008 (3)
N40.054 (5)0.065 (6)0.055 (5)0.015 (4)0.015 (4)0.004 (4)
Geometric parameters (Å, º) top
C1—C21.335 (13)C7—N21.340 (13)
C1—N31.354 (11)C7—H100.9300
C1—H10.9300C8—N11.332 (12)
C2—N41.348 (12)C8—N21.324 (12)
C2—H20.9300C8—H120.9300
C3—N41.317 (12)C9—N11.477 (10)
C3—N31.326 (11)C9—C101.5246
C3—H40.9300C9—H130.9700
C4—N31.462 (11)C9—H140.9700
C4—C51.519 (13)C10—C10ii1.489
C4—H60.9700C10—H150.9700
C4—H50.9700C10—H160.9700
C5—C5i1.487 (19)I1—I22.9745 (10)
C5—H80.9700I2—I32.8662 (10)
C5—H70.9700I4—I52.9031 (11)
C6—C71.347 (13)I5—I62.9604 (11)
C6—N11.367 (11)N2—H110.8544
C6—H90.9300N4—H30.8628
C2—C1—N3107.7 (8)N1—C8—H12127.1
C2—C1—H1126.2N2—C8—H12127.1
N3—C1—H1126.2N1—C9—C10112.9
C1—C2—N4107.1 (9)N1—C9—H13109.0
C1—C2—H2126.5C10—C9—H13109.0
N4—C2—H2126.5N1—C9—H14109.0
N4—C3—N3108.2 (9)C10—C9—H14109.0
N4—C3—H4125.9H13—C9—H14107.8
N3—C3—H4125.9C10ii—C10—C9112.0 (5)
N3—C4—C5112.1 (8)C10ii—C10—H15109.2
N3—C4—H6109.2C9—C10—H15109.2
C5—C4—H6109.2C10ii—C10—H16109.2
N3—C4—H5109.2C9—C10—H16109.2
C5—C4—H5109.2H15—C10—H16107.9
H6—C4—H5107.9I3—I2—I1178.89 (3)
C5i—C5—C4114.5 (10)I4—I5—I6176.21 (3)
C5i—C5—H8108.6C8—N1—C6108.7 (9)
C4—C5—H8108.6C8—N1—C9125.1 (8)
C5i—C5—H7108.6C6—N1—C9126.2 (8)
C4—C5—H7108.6C8—N2—C7112.3 (9)
H8—C5—H7107.6C8—N2—H11114.7
C7—C6—N1108.1 (9)C7—N2—H11131.3
C7—C6—H9125.9C3—N3—C1108.0 (8)
N1—C6—H9125.9C3—N3—C4127.3 (8)
C6—C7—N2105.0 (9)C1—N3—C4124.6 (7)
C6—C7—H10127.5C3—N4—C2109.0 (8)
N2—C7—H10127.5C3—N4—H3118.4
N1—C8—N2105.9 (9)C2—N4—H3132.6
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H11···I3iii0.853.143.690 (9)124
N2—H11···I1iv0.852.993.666 (9)138
N4—H3···I1v0.863.253.714 (9)116
N4—H3···I6i0.863.033.679 (8)134
C6—H9···I40.933.133.823 (10)132
Symmetry codes: (i) x+1, y, z+1; (iii) x+1, y+1, z; (iv) x+2, y+1, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H16N42+·2I3
Mr953.67
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.4753 (17), 9.7177 (19), 14.110 (3)
α, β, γ (°)95.77 (3), 92.82 (3), 107.17 (3)
V3)1100.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)8.46
Crystal size (mm)0.21 × 0.20 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.266, 0.307
No. of measured, independent and
observed [I > 2σ(I)] reflections
8492, 3831, 3045
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.087, 1.10
No. of reflections3831
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 0.86

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H11···I3i0.853.143.690 (9)124.3
N2—H11···I1ii0.852.993.666 (9)138.0
N4—H3···I1iii0.863.253.714 (9)116.0
N4—H3···I6iv0.863.033.679 (8)133.6
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1.
 

Acknowledgements

The authors thank Heilongjiang University for supporting this study.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMa, J.-F., Yang, J., Zheng, G.-L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531–7534.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Y.-H., Shi, A.-E., Su, Y., Hou, G.-F. & Gao, J.-S. (2008). Acta Cryst. E64, m628.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds