metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Benzoato-κ2O,O′)(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N,N′,N′′,N′′′)nickel(II) perchlorate monohydrate

aDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou Hunan 425100, People's Republic of China
*Correspondence e-mail: ouguangchuan@yahoo.com.cn

(Received 28 June 2008; accepted 3 July 2008; online 9 July 2008)

The Ni atom in the title salt, [Ni(C7H5O2)(C16H36N4)]ClO4·H2O, is in a six-coordinate octa­hedral geometry. The metal atom is chelated by the carboxyl­ate group, and the macrocyclic ligand adopts a folded configuration. The cation, anion and water mol­ecules engage in hydrogen bonding to form a layer structure.

Related literature

For related literature, see: Jiang et al. (2005[Jiang, L., Feng, X. L. & Lu, T. B. (2005). Cryst. Growth Des. 5, 1469-1475.]); Ou et al. (2008[Ou, G. C., Jiang, L., Feng, X. L. & Lu, T. B. (2008). Inorg. Chem. 47, 2710-2718.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H5O2)(C16H36N4)]ClO4·H2O

  • Mr = 581.77

  • Monoclinic, P 21 /c

  • a = 15.1239 (14) Å

  • b = 8.9351 (8) Å

  • c = 20.9918 (19) Å

  • β = 102.414 (2)°

  • V = 2770.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 173 (2) K

  • 0.48 × 0.40 × 0.21 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.688, Tmax = 0.843

  • 15892 measured reflections

  • 6007 independent reflections

  • 4802 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.121

  • S = 1.10

  • 6007 reflections

  • 337 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N4 2.0859 (19)
Ni1—N2 2.1053 (18)
Ni1—N3 2.117 (2)
Ni1—N1 2.1333 (19)
Ni1—O1 2.1379 (17)
Ni1—O2 2.1698 (16)
O1—Ni1—O2 61.52 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1W 0.93 2.16 3.080 (3) 168
O1W—H1D⋯O6 0.844 (19) 2.12 (3) 2.934 (4) 162 (6)
O1W—H1E⋯O2 0.86 (2) 2.18 (4) 2.931 (3) 146 (5)

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It's important to control the geometries of ML2+ [M = Ni(II), Co(II), Cu(II)] with cis- or trans-conformation, since they form different structures and show different properties (Jiang et al., 2005). A racemic nickel(II) complex with cis-conformation can be separated to two enantiomers by the reactions of [Ni(rac-L)]2+ with chiral amino acid such as phenylalanine (Ou et al., 2008). Then we employ no chiral benzoic acid as separation reagent, but the result of experiment indicate a racemic complex of [Ni(rac-L)(bz)(ClO4)]H2O is obtained instead of two enantiomers. In the asymmetric unit of (I), contains one [Ni(rac-L)(bz)]+ cation, one [ClO4]- anion and one water molecule. As illustrated in Fig.1, The six-coordinated Ni2+ of [Ni(rac-L)(bz)]+ cation display a distorted octahedral geometry by coordination with four N atoms of macrocyclic ligand L in a folded configuration, and two carboxylate oxygen atoms of benzoic acid in cis-position. The Ni—N distances ranging from 2.086 (19) to 2.133 (19) Å, are slight shorter than the Ni—O distance [2.138 (17) to 2.170 (16) Å] (Table 1). Neighbouring cations and anions are discrete, connected to each other through two intermolecular hydrogen bond (Table 2), water and oxygen atom of benzoato anion, and water and oxygen atom of [ClO4]- anion (See Fig. 2).

Related literature top

For related literature, see: Jiang et al. (2005); Ou et al. (2008).

Experimental top

benzoic acid (H2bz, 0.122 g, 1 mmol) was mixed with NaOH (0.040 g, 1 mmol) dissolved in 10 ml of water. To this solution was added [Ni(rac-L)](ClO4)2 (0.541 g, 1 mmol) dissolved in a minimum amount of CH3CN. The solution was left to stand at room temperature and blue crystals formed after several weeks(yield 53%).

Refinement top

H atoms attached to O (water) atoms were located in difference Fourier maps and condtrained to ride on their carrier atoms, with O—H distances in the range 0.82 Å, and with Uiso (H) = 1.5 times Ueq (O).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Two intermolecular hydrogen bond, O1w and O2 of benzoato anion, and O1w and O6 of [ClO4]- anion.
(Benzoato-κ2O,O')(5,5,7,12,12,14-hexamethyl-1,4,8,11- tetraazacyclotetradecane- κ4N,N',N'',N''')nickel(II) perchlorate monohydrate top
Crystal data top
[Ni(C7H5O2)(C16H36N4)]ClO4·H2OF(000) = 1240
Mr = 581.77Dx = 1.395 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8118 reflections
a = 15.1239 (14) Åθ = 2.7–27.1°
b = 8.9351 (8) ŵ = 0.84 mm1
c = 20.9918 (19) ÅT = 173 K
β = 102.414 (2)°Block, blue
V = 2770.4 (4) Å30.48 × 0.40 × 0.21 mm
Z = 4
Data collection top
Bruker SMART
diffractometer
6007 independent reflections
Radiation source: fine-focus sealed tube4802 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1619
Tmin = 0.688, Tmax = 0.843k = 1111
15892 measured reflectionsl = 2624
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0673P)2 + 1.378P]
where P = (Fo2 + 2Fc2)/3
6007 reflections(Δ/σ)max < 0.001
337 parametersΔρmax = 0.43 e Å3
2 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Ni(C7H5O2)(C16H36N4)]ClO4·H2OV = 2770.4 (4) Å3
Mr = 581.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.1239 (14) ŵ = 0.84 mm1
b = 8.9351 (8) ÅT = 173 K
c = 20.9918 (19) Å0.48 × 0.40 × 0.21 mm
β = 102.414 (2)°
Data collection top
Bruker SMART
diffractometer
6007 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4802 reflections with I > 2σ(I)
Tmin = 0.688, Tmax = 0.843Rint = 0.023
15892 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.43 e Å3
6007 reflectionsΔρmin = 0.44 e Å3
337 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.250097 (18)0.59158 (3)0.132452 (13)0.01980 (10)
N40.15871 (13)0.4136 (2)0.11775 (9)0.0229 (4)
H4D0.16850.35750.15590.027*
O10.30893 (11)0.79837 (19)0.11139 (8)0.0256 (4)
O20.20094 (11)0.69355 (18)0.03764 (8)0.0256 (4)
N10.16886 (12)0.7161 (2)0.18507 (9)0.0226 (4)
H1C0.18390.81590.18060.027*
N30.33157 (13)0.4525 (2)0.08693 (9)0.0237 (4)
H3A0.32280.48680.04420.028*
N20.33164 (12)0.5457 (2)0.22499 (9)0.0209 (4)
H2C0.31110.45620.23920.025*
C90.20586 (16)0.6787 (3)0.25445 (11)0.0259 (5)
H9A0.17990.58280.26530.031*
H9B0.18900.75770.28270.031*
C180.27474 (16)0.9066 (3)0.00497 (11)0.0233 (5)
C170.26017 (15)0.7949 (3)0.05489 (11)0.0232 (5)
C100.30721 (16)0.6661 (3)0.26643 (12)0.0277 (5)
H10A0.33330.76230.25600.033*
H10B0.33210.64310.31300.033*
C130.45580 (16)0.4159 (3)0.18539 (12)0.0273 (5)
H13A0.42540.32120.19240.033*
H13B0.52180.39760.19820.033*
C110.43209 (15)0.5309 (3)0.23209 (11)0.0249 (5)
H110.45660.63000.22210.030*
C20.18611 (17)0.3218 (3)0.06704 (12)0.0296 (5)
H2A0.16640.37080.02400.036*
H2B0.15660.22250.06500.036*
C140.43295 (16)0.4485 (3)0.11189 (12)0.0273 (5)
C160.47053 (18)0.5992 (3)0.09632 (14)0.0355 (6)
H16A0.53650.59970.11170.053*
H16B0.44390.67910.11820.053*
H16C0.45530.61580.04910.053*
C30.06071 (15)0.4551 (3)0.10069 (12)0.0273 (5)
H30.04990.51830.06040.033*
C80.02322 (18)0.7801 (3)0.21821 (14)0.0375 (6)
H8A0.03470.71640.25710.056*
H8B0.04220.78920.20140.056*
H8C0.04910.87960.22960.056*
C50.03588 (16)0.5467 (3)0.15609 (13)0.0300 (5)
H5A0.03090.54620.14960.036*
H5B0.06000.49310.19740.036*
C210.3060 (2)1.1047 (3)0.08971 (13)0.0344 (6)
H210.31681.17260.12200.041*
C230.20363 (17)0.9519 (3)0.04531 (13)0.0318 (6)
H230.14430.91440.04750.038*
C220.21979 (19)1.0518 (3)0.09210 (13)0.0368 (6)
H220.17121.08390.12590.044*
C200.37688 (18)1.0589 (3)0.04021 (13)0.0313 (6)
H200.43651.09400.03910.038*
C10.28810 (17)0.3027 (3)0.08246 (13)0.0312 (6)
H1A0.30760.24880.12430.037*
H1B0.30660.24320.04780.037*
C70.03832 (18)0.8008 (3)0.10272 (13)0.0362 (6)
H7A0.05330.90650.11180.054*
H7B0.02710.79040.08630.054*
H7C0.07030.76380.06990.054*
C190.36099 (16)0.9624 (3)0.00744 (12)0.0278 (5)
H190.40940.93400.04220.033*
C120.47882 (18)0.4865 (3)0.30144 (12)0.0351 (6)
H12A0.46290.55840.33240.053*
H12B0.54460.48660.30540.053*
H12C0.45900.38620.31100.053*
C40.00056 (18)0.3171 (3)0.08730 (14)0.0389 (7)
H4A0.01250.26200.05000.058*
H4B0.06410.34880.07740.058*
H4C0.01070.25230.12590.058*
C60.06727 (15)0.7097 (3)0.16554 (11)0.0266 (5)
C150.47577 (19)0.3267 (3)0.07671 (13)0.0375 (6)
H15A0.54190.33570.08850.056*
H15B0.45500.33860.02940.056*
H15C0.45780.22790.08970.056*
O1W0.2792 (2)0.5335 (4)0.05895 (13)0.0872 (11)
H1D0.246 (3)0.505 (7)0.0943 (18)0.131*
H1E0.238 (3)0.581 (6)0.045 (3)0.131*
Cl10.23445 (4)0.37222 (7)0.24307 (3)0.03201 (16)
O30.21061 (14)0.2166 (2)0.24210 (9)0.0415 (5)
O50.19455 (19)0.4317 (2)0.30582 (11)0.0585 (7)
O40.32947 (18)0.3837 (4)0.23043 (17)0.0865 (10)
O60.1992 (2)0.4479 (3)0.19397 (11)0.0654 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01889 (16)0.02163 (17)0.01882 (16)0.00185 (11)0.00392 (11)0.00090 (11)
N40.0240 (10)0.0251 (10)0.0189 (9)0.0024 (8)0.0033 (8)0.0007 (7)
O10.0255 (8)0.0277 (9)0.0232 (8)0.0025 (7)0.0043 (7)0.0029 (7)
O20.0244 (8)0.0258 (9)0.0255 (8)0.0029 (7)0.0032 (7)0.0017 (7)
N10.0207 (9)0.0227 (10)0.0246 (10)0.0001 (8)0.0057 (8)0.0002 (8)
N30.0209 (9)0.0282 (11)0.0224 (10)0.0001 (8)0.0056 (8)0.0008 (8)
N20.0192 (9)0.0232 (10)0.0198 (9)0.0005 (7)0.0034 (7)0.0013 (7)
C90.0291 (12)0.0268 (13)0.0226 (11)0.0015 (10)0.0074 (9)0.0020 (9)
C180.0246 (11)0.0233 (12)0.0235 (11)0.0021 (9)0.0083 (9)0.0006 (9)
C170.0201 (11)0.0244 (12)0.0256 (11)0.0035 (9)0.0063 (9)0.0003 (9)
C100.0284 (13)0.0283 (13)0.0245 (12)0.0003 (10)0.0012 (10)0.0041 (10)
C130.0232 (12)0.0300 (13)0.0276 (12)0.0031 (9)0.0034 (10)0.0012 (10)
C110.0208 (11)0.0282 (13)0.0249 (12)0.0010 (9)0.0028 (9)0.0030 (9)
C20.0296 (13)0.0339 (14)0.0257 (12)0.0074 (10)0.0067 (10)0.0093 (10)
C140.0221 (12)0.0329 (13)0.0282 (12)0.0024 (10)0.0082 (10)0.0010 (10)
C160.0263 (13)0.0443 (17)0.0367 (15)0.0027 (11)0.0090 (11)0.0089 (12)
C30.0193 (11)0.0340 (14)0.0269 (12)0.0038 (10)0.0015 (9)0.0004 (10)
C80.0302 (13)0.0434 (17)0.0420 (16)0.0040 (12)0.0142 (12)0.0067 (12)
C50.0205 (12)0.0370 (14)0.0331 (13)0.0047 (10)0.0073 (10)0.0024 (11)
C210.0448 (16)0.0312 (14)0.0316 (14)0.0048 (11)0.0182 (12)0.0095 (11)
C230.0252 (12)0.0350 (14)0.0343 (14)0.0005 (10)0.0042 (10)0.0050 (11)
C220.0345 (14)0.0425 (16)0.0311 (14)0.0068 (12)0.0018 (11)0.0102 (12)
C200.0285 (13)0.0333 (14)0.0353 (14)0.0006 (11)0.0138 (11)0.0035 (11)
C10.0333 (14)0.0250 (13)0.0377 (14)0.0004 (10)0.0129 (11)0.0067 (10)
C70.0269 (13)0.0417 (16)0.0378 (14)0.0092 (11)0.0023 (11)0.0027 (12)
C190.0234 (12)0.0320 (13)0.0284 (12)0.0027 (10)0.0066 (10)0.0046 (10)
C120.0290 (13)0.0463 (17)0.0266 (13)0.0064 (12)0.0017 (10)0.0001 (12)
C40.0270 (13)0.0446 (17)0.0444 (16)0.0144 (12)0.0060 (11)0.0119 (13)
C60.0212 (11)0.0329 (14)0.0253 (12)0.0016 (10)0.0045 (9)0.0017 (10)
C150.0332 (14)0.0447 (17)0.0371 (15)0.0087 (12)0.0134 (11)0.0004 (12)
O1W0.108 (3)0.104 (2)0.0420 (15)0.051 (2)0.0002 (15)0.0162 (15)
Cl10.0377 (3)0.0263 (3)0.0303 (3)0.0022 (2)0.0035 (3)0.0017 (2)
O30.0604 (13)0.0272 (10)0.0369 (10)0.0006 (9)0.0105 (9)0.0005 (8)
O50.096 (2)0.0360 (12)0.0376 (12)0.0114 (12)0.0018 (12)0.0082 (9)
O40.0395 (14)0.112 (3)0.104 (2)0.0220 (15)0.0060 (15)0.0054 (19)
O60.097 (2)0.0534 (15)0.0436 (13)0.0220 (14)0.0098 (13)0.0208 (11)
Geometric parameters (Å, º) top
Ni1—N42.0859 (19)C16—H16C0.9800
Ni1—N22.1053 (18)C3—C41.532 (3)
Ni1—N32.117 (2)C3—C51.533 (4)
Ni1—N12.1333 (19)C3—H31.0000
Ni1—O12.1379 (17)C8—C61.542 (3)
Ni1—O22.1698 (16)C8—H8A0.9800
N4—C21.472 (3)C8—H8B0.9800
N4—C31.495 (3)C8—H8C0.9800
N4—H4D0.9300C5—C61.531 (4)
O1—C171.255 (3)C5—H5A0.9900
O2—C171.271 (3)C5—H5B0.9900
N1—C91.482 (3)C21—C221.377 (4)
N1—C61.504 (3)C21—C201.385 (4)
N1—H1C0.9300C21—H210.9500
N3—C11.485 (3)C23—C221.387 (4)
N3—C141.510 (3)C23—H230.9500
N3—H3A0.9300C22—H220.9500
N2—C101.480 (3)C20—C191.380 (3)
N2—C111.500 (3)C20—H200.9500
N2—H2C0.9300C1—H1A0.9900
C9—C101.503 (3)C1—H1B0.9900
C9—H9A0.9900C7—C61.531 (4)
C9—H9B0.9900C7—H7A0.9800
C18—C191.387 (3)C7—H7B0.9800
C18—C231.395 (3)C7—H7C0.9800
C18—C171.497 (3)C19—H190.9500
C10—H10A0.9900C12—H12A0.9800
C10—H10B0.9900C12—H12B0.9800
C13—C111.515 (3)C12—H12C0.9800
C13—C141.535 (3)C4—H4A0.9800
C13—H13A0.9900C4—H4B0.9800
C13—H13B0.9900C4—H4C0.9800
C11—C121.528 (3)C15—H15A0.9800
C11—H111.0000C15—H15B0.9800
C2—C11.516 (3)C15—H15C0.9800
C2—H2A0.9900O1W—H1D0.844 (19)
C2—H2B0.9900O1W—H1E0.86 (2)
C14—C161.524 (4)Cl1—O41.408 (3)
C14—C151.535 (4)Cl1—O51.428 (2)
C16—H16A0.9800Cl1—O61.428 (2)
C16—H16B0.9800Cl1—O31.437 (2)
N4—Ni1—N2103.07 (8)C16—C14—C15108.0 (2)
N4—Ni1—N385.25 (8)C13—C14—C15108.8 (2)
N2—Ni1—N391.14 (7)C14—C16—H16A109.5
N4—Ni1—N192.13 (8)C14—C16—H16B109.5
N2—Ni1—N184.96 (7)H16A—C16—H16B109.5
N3—Ni1—N1174.71 (8)C14—C16—H16C109.5
N4—Ni1—O1156.97 (7)H16A—C16—H16C109.5
N2—Ni1—O199.89 (7)H16B—C16—H16C109.5
N3—Ni1—O196.05 (7)N4—C3—C4111.9 (2)
N1—Ni1—O188.16 (7)N4—C3—C5110.04 (19)
N4—Ni1—O295.68 (7)C4—C3—C5109.4 (2)
N2—Ni1—O2160.97 (7)N4—C3—H3108.5
N3—Ni1—O287.15 (7)C4—C3—H3108.5
N1—Ni1—O297.70 (7)C5—C3—H3108.5
O1—Ni1—O261.52 (6)C6—C8—H8A109.5
C2—N4—C3112.56 (18)C6—C8—H8B109.5
C2—N4—Ni1104.54 (14)H8A—C8—H8B109.5
C3—N4—Ni1115.95 (15)C6—C8—H8C109.5
C2—N4—H4D107.8H8A—C8—H8C109.5
C3—N4—H4D107.8H8B—C8—H8C109.5
Ni1—N4—H4D107.8C6—C5—C3119.1 (2)
C17—O1—Ni189.32 (14)C6—C5—H5A107.5
C17—O2—Ni187.50 (13)C3—C5—H5A107.5
C9—N1—C6114.04 (17)C6—C5—H5B107.5
C9—N1—Ni1104.68 (13)C3—C5—H5B107.5
C6—N1—Ni1120.50 (14)H5A—C5—H5B107.0
C9—N1—H1C105.5C22—C21—C20120.0 (2)
C6—N1—H1C105.5C22—C21—H21120.0
Ni1—N1—H1C105.5C20—C21—H21120.0
C1—N3—C14113.78 (19)C22—C23—C18119.9 (2)
C1—N3—Ni1105.34 (14)C22—C23—H23120.1
C14—N3—Ni1120.21 (15)C18—C23—H23120.1
C1—N3—H3A105.4C21—C22—C23120.3 (2)
C14—N3—H3A105.4C21—C22—H22119.9
Ni1—N3—H3A105.4C23—C22—H22119.9
C10—N2—C11112.42 (18)C19—C20—C21120.0 (2)
C10—N2—Ni1103.31 (14)C19—C20—H20120.0
C11—N2—Ni1119.26 (14)C21—C20—H20120.0
C10—N2—H2C107.1N3—C1—C2109.2 (2)
C11—N2—H2C107.1N3—C1—H1A109.8
Ni1—N2—H2C107.1C2—C1—H1A109.8
N1—C9—C10109.72 (18)N3—C1—H1B109.8
N1—C9—H9A109.7C2—C1—H1B109.8
C10—C9—H9A109.7H1A—C1—H1B108.3
N1—C9—H9B109.7C6—C7—H7A109.5
C10—C9—H9B109.7C6—C7—H7B109.5
H9A—C9—H9B108.2H7A—C7—H7B109.5
C19—C18—C23119.3 (2)C6—C7—H7C109.5
C19—C18—C17119.5 (2)H7A—C7—H7C109.5
C23—C18—C17121.1 (2)H7B—C7—H7C109.5
O1—C17—O2121.4 (2)C20—C19—C18120.4 (2)
O1—C17—C18120.0 (2)C20—C19—H19119.8
O2—C17—C18118.5 (2)C18—C19—H19119.8
O1—C17—Ni160.09 (12)C11—C12—H12A109.5
O2—C17—Ni161.52 (12)C11—C12—H12B109.5
C18—C17—Ni1172.92 (16)H12A—C12—H12B109.5
N2—C10—C9109.31 (19)C11—C12—H12C109.5
N2—C10—H10A109.8H12A—C12—H12C109.5
C9—C10—H10A109.8H12B—C12—H12C109.5
N2—C10—H10B109.8C3—C4—H4A109.5
C9—C10—H10B109.8C3—C4—H4B109.5
H10A—C10—H10B108.3H4A—C4—H4B109.5
C11—C13—C14119.2 (2)C3—C4—H4C109.5
C11—C13—H13A107.5H4A—C4—H4C109.5
C14—C13—H13A107.5H4B—C4—H4C109.5
C11—C13—H13B107.5N1—C6—C7107.51 (19)
C14—C13—H13B107.5N1—C6—C5109.96 (19)
H13A—C13—H13B107.0C7—C6—C5111.7 (2)
N2—C11—C13111.78 (19)N1—C6—C8111.26 (19)
N2—C11—C12111.64 (19)C7—C6—C8108.2 (2)
C13—C11—C12108.4 (2)C5—C6—C8108.1 (2)
N2—C11—H11108.3C14—C15—H15A109.5
C13—C11—H11108.3C14—C15—H15B109.5
C12—C11—H11108.3H15A—C15—H15B109.5
N4—C2—C1109.87 (19)C14—C15—H15C109.5
N4—C2—H2A109.7H15A—C15—H15C109.5
C1—C2—H2A109.7H15B—C15—H15C109.5
N4—C2—H2B109.7H1D—O1W—H1E96 (5)
C1—C2—H2B109.7O4—Cl1—O5110.99 (19)
H2A—C2—H2B108.2O4—Cl1—O6110.70 (19)
N3—C14—C16107.6 (2)O5—Cl1—O6109.89 (15)
N3—C14—C13110.23 (19)O4—Cl1—O3108.47 (17)
C16—C14—C13111.7 (2)O5—Cl1—O3108.38 (13)
N3—C14—C15110.6 (2)O6—Cl1—O3108.32 (15)
N2—Ni1—N4—C2108.67 (15)C19—C18—C17—O2145.7 (2)
N3—Ni1—N4—C218.60 (15)C23—C18—C17—O232.2 (3)
N1—Ni1—N4—C2166.01 (15)N4—Ni1—C17—O1174.52 (12)
O1—Ni1—N4—C275.7 (2)N2—Ni1—C17—O19.01 (17)
O2—Ni1—N4—C268.05 (15)N3—Ni1—C17—O1100.98 (13)
C17—Ni1—N4—C268.56 (17)N1—Ni1—C17—O178.34 (14)
N2—Ni1—N4—C3126.78 (15)O2—Ni1—C17—O1175.5 (2)
N3—Ni1—N4—C3143.15 (16)N4—Ni1—C17—O20.99 (17)
N1—Ni1—N4—C341.46 (16)N2—Ni1—C17—O2175.48 (12)
O1—Ni1—N4—C348.8 (3)N3—Ni1—C17—O283.51 (13)
O2—Ni1—N4—C356.50 (16)N1—Ni1—C17—O297.16 (13)
C17—Ni1—N4—C355.99 (18)O1—Ni1—C17—O2175.5 (2)
N4—Ni1—O1—C1711.3 (3)C11—N2—C10—C9177.47 (19)
N2—Ni1—O1—C17173.02 (13)Ni1—N2—C10—C947.6 (2)
N3—Ni1—O1—C1780.80 (14)N1—C9—C10—N260.6 (3)
N1—Ni1—O1—C17102.42 (14)C10—N2—C11—C13175.36 (19)
O2—Ni1—O1—C172.63 (13)Ni1—N2—C11—C1354.3 (2)
N4—Ni1—O2—C17179.21 (13)C10—N2—C11—C1263.1 (3)
N2—Ni1—O2—C1710.6 (3)Ni1—N2—C11—C12175.85 (17)
N3—Ni1—O2—C1795.85 (14)C14—C13—C11—N268.1 (3)
N1—Ni1—O2—C1786.27 (14)C14—C13—C11—C12168.4 (2)
O1—Ni1—O2—C172.60 (12)C3—N4—C2—C1171.8 (2)
N4—Ni1—N1—C993.70 (15)Ni1—N4—C2—C145.1 (2)
N2—Ni1—N1—C99.24 (14)C1—N3—C14—C16164.6 (2)
O1—Ni1—N1—C9109.34 (14)Ni1—N3—C14—C1669.1 (2)
O2—Ni1—N1—C9170.27 (14)C1—N3—C14—C1373.3 (2)
C17—Ni1—N1—C9139.25 (14)Ni1—N3—C14—C1352.9 (2)
N4—Ni1—N1—C636.32 (17)C1—N3—C14—C1547.0 (3)
N2—Ni1—N1—C6139.26 (17)Ni1—N3—C14—C15173.21 (16)
O1—Ni1—N1—C6120.64 (17)C11—C13—C14—N366.7 (3)
O2—Ni1—N1—C659.71 (17)C11—C13—C14—C1652.9 (3)
C17—Ni1—N1—C690.73 (17)C11—C13—C14—C15171.9 (2)
N4—Ni1—N3—C110.58 (15)C2—N4—C3—C456.6 (3)
N2—Ni1—N3—C192.45 (15)Ni1—N4—C3—C4176.92 (17)
O1—Ni1—N3—C1167.48 (15)C2—N4—C3—C5178.5 (2)
O2—Ni1—N3—C1106.52 (15)Ni1—N4—C3—C561.2 (2)
C17—Ni1—N3—C1137.33 (15)N4—C3—C5—C674.1 (3)
N4—Ni1—N3—C14140.64 (17)C4—C3—C5—C6162.6 (2)
N2—Ni1—N3—C1437.62 (17)C19—C18—C23—C220.0 (4)
O1—Ni1—N3—C1462.45 (17)C17—C18—C23—C22177.9 (2)
O2—Ni1—N3—C14123.41 (17)C20—C21—C22—C230.4 (4)
N4—Ni1—N2—C10111.54 (15)C18—C23—C22—C211.0 (4)
N3—Ni1—N2—C10163.07 (15)C22—C21—C20—C191.2 (4)
N1—Ni1—N2—C1020.52 (14)C14—N3—C1—C2171.41 (19)
O1—Ni1—N2—C1066.73 (15)Ni1—N3—C1—C237.7 (2)
O2—Ni1—N2—C1078.5 (3)N4—C2—C1—N358.1 (3)
C17—Ni1—N2—C1071.37 (17)C21—C20—C19—C182.2 (4)
N4—Ni1—N2—C11122.90 (17)C23—C18—C19—C201.6 (4)
N3—Ni1—N2—C1137.51 (17)C17—C18—C19—C20176.3 (2)
N1—Ni1—N2—C11146.08 (17)C9—N1—C6—C7160.6 (2)
O1—Ni1—N2—C1158.84 (17)Ni1—N1—C6—C773.6 (2)
O2—Ni1—N2—C1147.1 (3)C9—N1—C6—C577.6 (2)
C6—N1—C9—C10171.69 (19)Ni1—N1—C6—C548.2 (2)
Ni1—N1—C9—C1038.0 (2)C9—N1—C6—C842.2 (3)
Ni1—O1—C17—O24.6 (2)Ni1—N1—C6—C8168.01 (17)
Ni1—O1—C17—C18171.82 (19)C3—C5—C6—N165.4 (3)
Ni1—O2—C17—O14.6 (2)C3—C5—C6—C753.9 (3)
C19—C18—C17—O130.9 (3)C3—C5—C6—C8172.9 (2)
C23—C18—C17—O1151.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1W0.932.163.080 (3)168
O1W—H1D···O60.84 (2)2.12 (3)2.934 (4)162 (6)
O1W—H1E···O20.86 (2)2.18 (4)2.931 (3)146 (5)

Experimental details

Crystal data
Chemical formula[Ni(C7H5O2)(C16H36N4)]ClO4·H2O
Mr581.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)15.1239 (14), 8.9351 (8), 20.9918 (19)
β (°) 102.414 (2)
V3)2770.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.48 × 0.40 × 0.21
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.688, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
15892, 6007, 4802
Rint0.023
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.121, 1.10
No. of reflections6007
No. of parameters337
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.44

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—N42.0859 (19)Ni1—N12.1333 (19)
Ni1—N22.1053 (18)Ni1—O12.1379 (17)
Ni1—N32.117 (2)Ni1—O22.1698 (16)
O1—Ni1—O261.52 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O1W0.932.163.080 (3)168.0
O1W—H1D···O60.844 (19)2.12 (3)2.934 (4)162 (6)
O1W—H1E···O20.86 (2)2.18 (4)2.931 (3)146 (5)
 

Acknowledgements

This work was supported financially by the Foundation for University Key Teachers of the Education Department of Hunan Province, and the Key Subject Construction Project of Hunan Province (grant No. 2006-180).

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, L., Feng, X. L. & Lu, T. B. (2005). Cryst. Growth Des. 5, 1469–1475.  Web of Science CSD CrossRef CAS Google Scholar
First citationOu, G. C., Jiang, L., Feng, X. L. & Lu, T. B. (2008). Inorg. Chem. 47, 2710–2718.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds