organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­nitro­benzyl methane­sulfonate

aChemistry Department, The University of Auckland, Private Bag 92019, Auckland, New Zealand
*Correspondence e-mail: g.clark@auckland.ac.nz

(Received 1 July 2008; accepted 6 July 2008; online 12 July 2008)

The title compound, C8H8N2O7S, an inter­mediate in the synthesis of N,N-bis­(2-hydroxy­ethyl)-3,5-dinitro­aniline, exists as a discrete mol­ecule; the nitro groups are twisted with respect to the aromatic system [dihedral angles = 17.0 (1) and 26.3 (1)°].

Related literature

For the utility of benzyl methane­sulfonates in synthesis, see: Barker et al. (2008[Barker, D., Lehmann, A. L., Mai, A., Khan, G. S. & Ng, E. (2008). Tetrahedron Lett. 49, 1660-1664.]); Bretonniere et al. (2004[Bretonniere, Y., Cann, M. J., Parker, D. & Slater, R. (2004). Org. Biomol. Chem. 2, 1624-1632.]); Oh et al. (2004[Oh, S.-J., Lee, K. C., Lee, S.-Y., Ryu, E. K., Saji, H., Choe, Y. S., Chi, D. Y., Kim, S. E., Lee, J. & Kim, B.-T. (2004). Bioorg. Med. Chem. 12, 5505-5513.]); Schirok et al. (2005[Schirok, H., Alonso-Alija, C., Benet-Buchholz, J., Goeller, A. H., Grosser, R., Michels, M. & Paulsen, H. (2005). J. Org. Chem. 70, 9463-9469.]). For the incorporation of N,N-bis­(2-hydroxy­ethyl)benzyl­amines in macromolecular metal complexes, see: Crans & Boukhobza (1998[Crans, D. C. & Boukhobza, I. (1998). J. Am. Chem. Soc. 120, 8069-8078.]); Koizumi et al. (2005[Koizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208-1210.], 2007[Koizumi, S., Nihei, M., Shiga, T., Nakano, M., Nojiri, H., Bircher, R., Waldmann, O., Ochsenbein, S. T., Guedel, H. U., Fernandez-Alonso, F. & Oshio, H. (2007). Chem. Eur. J. 13, 8445-8453.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8N2O7S

  • Mr = 276.22

  • Monoclinic, P 21 /c

  • a = 9.3549 (5) Å

  • b = 8.7552 (5) Å

  • c = 14.1526 (8) Å

  • β = 107.430 (1)°

  • V = 1105.91 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 89 (1) K

  • 0.32 × 0.14 × 0.14 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Univ. of Göttingen, Germany.]) Tmin = 0.799, Tmax = 0.971

  • 6374 measured reflections

  • 2233 independent reflections

  • 1959 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.06

  • 2233 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: SMART (Bruker, 1995[Bruker (1995). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1995[Bruker (1995). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Benzylic methansulfonates are readily prepared from benzylic alcohols and are often more easily prepared and more stable than the corresponding benzylic halide (Barker et al., 2008). In particular benzylic methanesulfonates are useful for the preparation of N,N-bis(2-hydroxyethyl)benzylamines, which are nitrogen mustard precursors. The dual functionality of the two free hydroxyl groups along with a basic nitrogen have also seen N,N-bis(2-hydroxyethyl)benzylamines used in synthesis of numerous metal complexes including those containing vanadium (Crans & Boukhobza, 1998), manganese (Koizumi et al., 2005, 2007) and iron (Koizumi et al., 2005). There are no hydrogen bonding or π - π interactions in the crystal. The closest intermolecular contacts are O3 ··· N1 of 2.83 Å, and a pair of O ··· O 3.32 Å contacts between sulfonate oxygen atoms.

Related literature top

For the utility of benzyl methanesulfonates in synthesis, see: Barker et al. (2008); Bretonniere et al. (2004); Oh et al. (2004); Schirok et al. (2005). For the incorporation of N,N-bis(2-hydroxyethyl)benzylamines in macromolecular metal complexes, see: Crans & Boukhobza (1998); Koizumi et al. (2005, 2007).

Experimental top

To a solution of 3,5-dinitrobenzyl alcohol (1.5 g, 7.57 mmol) and triethylamine (1.58 ml, 11.35 mmol) in dry THF (15 ml) at 0°C, under an atmosphere of nitrogen, was added dropwise a solution of methanesulfonyl chloride (0.88 ml, 11.35 mmol) in dry THF (5 ml) and the resulting solution stirred at room temperature for 3 h. The solvent was removed in vacuo and the residue diluted with ethyl acetate (150 ml), washed with brine (50 ml), dried (MgSO4) and the solvent removed in vacuo to afford the title compound (2 g, 96%) as a yellow solid which was recrystallized from ethyl acetate to give yellow crystals (m.p. 356–357 K) suitable for X-ray crystallography. IR νmax (NaCl)/cm-1 3399, 1627, 1541, 1458, 1344. 1H NMR (400 MHz, CDCl3, δ, p.p.m.) 3.15 (3H, s, CH3), 5.40 (2H, s, CH2O), 8.60 (2H, br s, Ar—H), 9.05 (1H, br s, Ar—H). δC (100 MHz, CDCl3, δ, p.p.m.) 38.6 (CH3, CH3), 67.4 (CH2, CH2O), 119.5 (CH, Ar—C), 128.2 (CH, Ar—C), 138.6 (CH, Ar—C), 149.1 (quat., Ar—C). MS m/z (EI) 276 (M+, 1%), 197 (100), 181 (42), 134 (20). HRMS (EI) Found M+ 276.00489, C8H8N2O7S requires 276.00522.

Refinement top

Hydrogen atoms were placed in calculated positions and refined using the riding model [C—H 0.93–0.97 Å), with Uiso(H) = 1.2 or 1.5 times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1995); cell refinement: SAINT (Bruker, 1995); data reduction: SAINT (Bruker, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Structure showing 50% probability displacement ellipsoids for non-hydrogen atoms and hydrogen atoms as arbitary spheres (Burnett & Johnson, 1996).
3,5-Dinitrobenzyl methanesulfonate top
Crystal data top
C8H8N2O7SF(000) = 568
Mr = 276.22Dx = 1.659 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4665 reflections
a = 9.3549 (5) Åθ = 2.3–26.4°
b = 8.7552 (5) ŵ = 0.32 mm1
c = 14.1526 (8) ÅT = 89 K
β = 107.430 (1)°Rod, yellow
V = 1105.91 (11) Å30.32 × 0.14 × 0.14 mm
Z = 4
Data collection top
Bruker SMART
diffractometer
2233 independent reflections
Radiation source: fine-focus sealed tube1959 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 911
Tmin = 0.799, Tmax = 0.971k = 109
6374 measured reflectionsl = 178
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.6248P]
where P = (Fo2 + 2Fc2)/3
2233 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C8H8N2O7SV = 1105.91 (11) Å3
Mr = 276.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3549 (5) ŵ = 0.32 mm1
b = 8.7552 (5) ÅT = 89 K
c = 14.1526 (8) Å0.32 × 0.14 × 0.14 mm
β = 107.430 (1)°
Data collection top
Bruker SMART
diffractometer
2233 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1959 reflections with I > 2σ(I)
Tmin = 0.799, Tmax = 0.971Rint = 0.019
6374 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.06Δρmax = 0.28 e Å3
2233 reflectionsΔρmin = 0.49 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.28908 (4)0.49088 (4)0.39904 (3)0.01554 (13)
O10.79782 (14)0.02166 (15)0.65112 (9)0.0229 (3)
O20.75778 (13)0.16192 (14)0.74420 (9)0.0199 (3)
O30.23786 (14)0.34566 (14)0.65950 (9)0.0230 (3)
O40.06497 (14)0.21217 (16)0.55662 (12)0.0343 (4)
O50.31800 (13)0.32888 (13)0.45017 (8)0.0171 (3)
O60.31513 (15)0.60687 (14)0.47320 (9)0.0259 (3)
O70.37522 (14)0.49312 (14)0.33100 (9)0.0223 (3)
N10.71506 (16)0.05791 (16)0.68364 (10)0.0166 (3)
N20.19482 (16)0.23139 (16)0.60944 (11)0.0191 (3)
C10.35300 (19)0.15179 (18)0.58246 (11)0.0149 (3)
C20.50631 (18)0.11998 (19)0.61537 (11)0.0155 (3)
H2A0.57610.19570.61550.019*
C30.55267 (18)0.02626 (19)0.64782 (12)0.0148 (3)
C40.45474 (18)0.14488 (18)0.64856 (11)0.0148 (3)
H4A0.48800.24180.67200.018*
C50.30408 (18)0.10912 (18)0.61204 (11)0.0150 (3)
C60.25038 (19)0.03509 (19)0.57931 (12)0.0154 (3)
H6A0.14790.05360.55570.019*
C70.29970 (19)0.31110 (18)0.54971 (12)0.0163 (3)
H7A0.19550.32350.54700.020*
H7B0.35930.38620.59510.020*
C80.0984 (2)0.4858 (2)0.33155 (17)0.0319 (5)
H8A0.07020.58100.29740.048*
H8B0.03990.46960.37600.048*
H8C0.08070.40400.28430.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0168 (2)0.0125 (2)0.0157 (2)0.00083 (14)0.00236 (16)0.00293 (14)
O10.0180 (6)0.0286 (7)0.0219 (7)0.0040 (5)0.0057 (5)0.0021 (5)
O20.0211 (6)0.0168 (6)0.0175 (6)0.0029 (5)0.0006 (5)0.0006 (5)
O30.0241 (7)0.0172 (6)0.0263 (7)0.0011 (5)0.0057 (5)0.0086 (5)
O40.0164 (7)0.0248 (7)0.0529 (9)0.0036 (5)0.0030 (6)0.0140 (7)
O50.0237 (6)0.0143 (6)0.0134 (6)0.0010 (5)0.0055 (5)0.0022 (4)
O60.0421 (8)0.0133 (6)0.0230 (6)0.0022 (5)0.0105 (6)0.0000 (5)
O70.0250 (7)0.0227 (7)0.0200 (6)0.0002 (5)0.0079 (5)0.0053 (5)
N10.0176 (7)0.0164 (7)0.0138 (6)0.0001 (6)0.0018 (6)0.0035 (6)
N20.0189 (7)0.0149 (7)0.0227 (7)0.0007 (6)0.0052 (6)0.0035 (6)
C10.0207 (8)0.0135 (8)0.0100 (7)0.0010 (6)0.0038 (6)0.0006 (6)
C20.0190 (8)0.0147 (8)0.0126 (7)0.0022 (6)0.0044 (6)0.0009 (6)
C30.0155 (8)0.0178 (8)0.0099 (7)0.0001 (6)0.0018 (6)0.0016 (6)
C40.0200 (8)0.0132 (8)0.0101 (7)0.0020 (6)0.0030 (6)0.0000 (6)
C50.0185 (8)0.0140 (8)0.0124 (7)0.0028 (6)0.0046 (6)0.0004 (6)
C60.0171 (8)0.0163 (8)0.0120 (7)0.0010 (6)0.0031 (6)0.0005 (6)
C70.0216 (8)0.0136 (8)0.0136 (8)0.0003 (6)0.0053 (6)0.0009 (6)
C80.0177 (9)0.0331 (11)0.0390 (12)0.0005 (8)0.0002 (8)0.0141 (9)
Geometric parameters (Å, º) top
S—O61.4279 (13)C1—C71.507 (2)
S—O71.4290 (13)C2—C31.385 (2)
S—O51.5783 (12)C2—H2A0.9300
S—C81.7538 (19)C3—C41.387 (2)
O1—N11.2289 (19)C4—C51.384 (2)
O2—N11.2322 (18)C4—H4A0.9300
O3—N21.2223 (18)C5—C61.386 (2)
O4—N21.2323 (19)C6—H6A0.9300
O5—C71.4773 (19)C7—H7A0.9700
N1—C31.476 (2)C7—H7B0.9700
N2—C51.473 (2)C8—H8A0.9600
C1—C61.394 (2)C8—H8B0.9600
C1—C21.397 (2)C8—H8C0.9600
O6—S—O7118.62 (8)C5—C4—C3115.40 (15)
O6—S—O5109.52 (7)C5—C4—H4A122.3
O7—S—O5105.51 (7)C3—C4—H4A122.3
O6—S—C8109.88 (10)C4—C5—C6123.88 (15)
O7—S—C8108.68 (9)C4—C5—N2117.80 (14)
O5—S—C8103.51 (8)C6—C5—N2118.32 (14)
C7—O5—S118.62 (10)C5—C6—C1118.68 (15)
O1—N1—O2124.75 (14)C5—C6—H6A120.7
O1—N1—C3117.64 (13)C1—C6—H6A120.7
O2—N1—C3117.61 (14)O5—C7—C1105.58 (13)
O3—N2—O4123.85 (14)O5—C7—H7A110.6
O3—N2—C5118.35 (13)C1—C7—H7A110.6
O4—N2—C5117.80 (14)O5—C7—H7B110.6
C6—C1—C2119.55 (15)C1—C7—H7B110.6
C6—C1—C7120.50 (15)H7A—C7—H7B108.8
C2—C1—C7119.95 (15)S—C8—H8A109.5
C3—C2—C1118.88 (15)S—C8—H8B109.5
C3—C2—H2A120.6H8A—C8—H8B109.5
C1—C2—H2A120.6S—C8—H8C109.5
C2—C3—C4123.55 (15)H8A—C8—H8C109.5
C2—C3—N1118.36 (14)H8B—C8—H8C109.5
C4—C3—N1118.09 (14)

Experimental details

Crystal data
Chemical formulaC8H8N2O7S
Mr276.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)89
a, b, c (Å)9.3549 (5), 8.7552 (5), 14.1526 (8)
β (°) 107.430 (1)
V3)1105.91 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.32 × 0.14 × 0.14
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.799, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
6374, 2233, 1959
Rint0.019
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.06
No. of reflections2233
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.49

Computer programs: SMART (Bruker, 1995), SAINT (Bruker, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support from the Higher Education Commission of Pakistan and the University of Auckland, New Zealand.

References

First citationBarker, D., Lehmann, A. L., Mai, A., Khan, G. S. & Ng, E. (2008). Tetrahedron Lett. 49, 1660–1664.  Web of Science CrossRef CAS Google Scholar
First citationBretonniere, Y., Cann, M. J., Parker, D. & Slater, R. (2004). Org. Biomol. Chem. 2, 1624–1632.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1995). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCrans, D. C. & Boukhobza, I. (1998). J. Am. Chem. Soc. 120, 8069–8078.  Web of Science CrossRef CAS Google Scholar
First citationKoizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem. 44, 1208–1210.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKoizumi, S., Nihei, M., Shiga, T., Nakano, M., Nojiri, H., Bircher, R., Waldmann, O., Ochsenbein, S. T., Guedel, H. U., Fernandez-Alonso, F. & Oshio, H. (2007). Chem. Eur. J. 13, 8445–8453.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOh, S.-J., Lee, K. C., Lee, S.-Y., Ryu, E. K., Saji, H., Choe, Y. S., Chi, D. Y., Kim, S. E., Lee, J. & Kim, B.-T. (2004). Bioorg. Med. Chem. 12, 5505–5513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchirok, H., Alonso-Alija, C., Benet-Buchholz, J., Goeller, A. H., Grosser, R., Michels, M. & Paulsen, H. (2005). J. Org. Chem. 70, 9463–9469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Univ. of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds