organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Chloro­phenyl benzoate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 9 July 2008; accepted 19 July 2008; online 26 July 2008)

The C=O group in the title compound, C13H9ClO2, is syn to the chloro group. The two aromatic rings are twisted by 56.88 (6)°. Adjacent mol­ecules are linked via weak C—H⋯O hydrogen bonding into a linear chain.

Related literature

For previous studies, see: Gowda et al. (2007a[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007a). Acta Cryst. E63, o3756.],b[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007b). Acta Cryst. E63, o3801.],c[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007c). Acta Cryst. E63, o4286.]); Nayak & Gowda (2008[Nayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9ClO2

  • Mr = 232.65

  • Triclinic, [P \overline 1]

  • a = 6.0734 (6) Å

  • b = 8.389 (1) Å

  • c = 11.747 (2) Å

  • α = 107.89 (1)°

  • β = 102.98 (1)°

  • γ = 93.25 (1)°

  • V = 549.89 (13) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.92 mm−1

  • T = 299 (2) K

  • 0.60 × 0.55 × 0.50 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.197, Tmax = 0.233

  • 2143 measured reflections

  • 1947 independent reflections

  • 1872 reflections with I > 2σ(I)

  • Rint = 0.086

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.135

  • S = 1.10

  • 1947 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.46 3.319 (3) 154
Symmetry code: (i) x-1, y, z.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the structures of aryl benzoates (Gowda et al., 2007a, b, c), in the present work, the structure of 3-chlorophenyl benzoate (3CPBA) has been determined. The conformation of the C=O bond in 3CPBA is syn to the meta-chloro group in the phenolic benzene ring (Fig. 1), in contrast to the anti conformations of the C=O bond and the meta-methyl group in 3-methylphenyl benzoate (3MePBA) (Gowda et al., 2007a). The bond parameters in 3CPBA are similar to those of 3MePBA (Gowda et al., 2007a), 2,3-dichlorophenyl benzoate (23DCPBA)(Gowda et al., 2007c), 3,4-dichlorophenyl benzoate(34DCPBA) (Gowda et al., 2007b) and other aryl benzoates (Gowda et al., 2007a, b, c). The dihedral angle between the benzene and benzoyl rings in 3CPBA is 56.88 (6)°, compared to the values of 79.61 (6)° in 3MePBA, 50.16 (7)° in 23DCPBA and 53.77 (5)° in 34DCPBA. The packing diagram of the crystal structure in which the molecules are connected via intermolecular C—H—O hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For previous studies, see: Gowda et al. (2007a,b,c); Nayak & Gowda (2008).

Experimental top

The title compound was prepared according to the method of Nayak & Gowda (2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2008). The single crystals used in X-ray diffraction studies were obtained by the slow evaporation of an ethanolic solution of the title compound at room temperature.

Refinement top

All H atoms were included in the riding-model approximation with C—H = 0.93 Å, and with Uiso(H) = 1.2xUeq(C).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound.
3-Chlorophenyl benzoate top
Crystal data top
C13H9ClO2Z = 2
Mr = 232.65F(000) = 240
Triclinic, P1Dx = 1.405 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 6.0734 (6) ÅCell parameters from 25 reflections
b = 8.389 (1) Åθ = 5.6–31.7°
c = 11.747 (2) ŵ = 2.92 mm1
α = 107.89 (1)°T = 299 K
β = 102.98 (1)°Prism, colourless
γ = 93.25 (1)°0.60 × 0.55 × 0.50 mm
V = 549.89 (13) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1872 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.086
Graphite monochromatorθmax = 66.9°, θmin = 4.1°
ω/2θ scansh = 71
Absorption correction: ψ scan
(North et al., 1968)
k = 99
Tmin = 0.197, Tmax = 0.233l = 1314
2143 measured reflections3 standard reflections every 120 min
1947 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0771P)2 + 0.1623P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
1947 reflectionsΔρmax = 0.30 e Å3
146 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.149 (8)
Crystal data top
C13H9ClO2γ = 93.25 (1)°
Mr = 232.65V = 549.89 (13) Å3
Triclinic, P1Z = 2
a = 6.0734 (6) ÅCu Kα radiation
b = 8.389 (1) ŵ = 2.92 mm1
c = 11.747 (2) ÅT = 299 K
α = 107.89 (1)°0.60 × 0.55 × 0.50 mm
β = 102.98 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1872 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.086
Tmin = 0.197, Tmax = 0.2333 standard reflections every 120 min
2143 measured reflections intensity decay: 1.0%
1947 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.10Δρmax = 0.30 e Å3
1947 reflectionsΔρmin = 0.34 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29134 (10)0.17688 (7)0.06457 (6)0.0678 (3)
O10.2384 (2)0.74790 (18)0.23750 (15)0.0565 (4)
O20.5777 (2)0.70473 (19)0.33852 (15)0.0587 (4)
C10.1614 (3)0.5746 (2)0.18489 (18)0.0474 (5)
C20.2647 (3)0.4730 (2)0.10218 (19)0.0477 (5)
H20.39620.51490.08690.057*
C30.1670 (3)0.3070 (3)0.04263 (19)0.0482 (5)
C40.0281 (3)0.2436 (3)0.0636 (2)0.0546 (5)
H40.09370.13210.02120.065*
C50.1247 (4)0.3482 (3)0.1485 (2)0.0593 (6)
H50.25490.30600.16470.071*
C60.0314 (3)0.5149 (3)0.2099 (2)0.0555 (5)
H60.09770.58530.26690.067*
C70.4554 (3)0.7994 (3)0.30835 (17)0.0458 (5)
C80.5176 (3)0.9840 (3)0.34208 (17)0.0457 (5)
C90.3622 (4)1.0902 (3)0.3149 (2)0.0568 (5)
H90.21091.04640.27400.068*
C100.4331 (5)1.2610 (3)0.3487 (2)0.0680 (7)
H100.32871.33230.33070.082*
C110.6556 (5)1.3268 (3)0.4086 (2)0.0692 (7)
H110.70181.44230.43150.083*
C120.8107 (5)1.2214 (3)0.4347 (2)0.0717 (7)
H120.96191.26580.47520.086*
C130.7428 (4)1.0512 (3)0.4013 (2)0.0602 (6)
H130.84860.98040.41840.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0704 (4)0.0528 (4)0.0800 (5)0.0084 (3)0.0358 (3)0.0095 (3)
O10.0472 (8)0.0453 (8)0.0692 (9)0.0134 (6)0.0057 (6)0.0131 (7)
O20.0543 (8)0.0553 (9)0.0681 (10)0.0198 (7)0.0096 (7)0.0247 (7)
C10.0436 (9)0.0457 (11)0.0534 (11)0.0114 (8)0.0092 (8)0.0183 (9)
C20.0429 (10)0.0475 (11)0.0581 (11)0.0066 (8)0.0177 (8)0.0215 (9)
C30.0471 (10)0.0478 (11)0.0560 (11)0.0098 (8)0.0179 (8)0.0218 (9)
C40.0502 (11)0.0492 (11)0.0667 (13)0.0021 (8)0.0140 (9)0.0241 (10)
C50.0447 (11)0.0721 (15)0.0711 (14)0.0048 (9)0.0210 (9)0.0335 (12)
C60.0464 (10)0.0671 (14)0.0574 (12)0.0162 (9)0.0192 (9)0.0211 (10)
C70.0452 (10)0.0506 (11)0.0456 (10)0.0152 (8)0.0148 (8)0.0176 (8)
C80.0498 (10)0.0493 (11)0.0412 (9)0.0133 (8)0.0146 (8)0.0161 (8)
C90.0574 (12)0.0549 (13)0.0593 (12)0.0174 (9)0.0124 (9)0.0202 (10)
C100.0885 (17)0.0525 (13)0.0701 (15)0.0255 (12)0.0225 (12)0.0254 (11)
C110.0935 (18)0.0520 (13)0.0634 (14)0.0038 (12)0.0272 (12)0.0169 (11)
C120.0675 (15)0.0653 (15)0.0712 (15)0.0050 (11)0.0129 (11)0.0128 (12)
C130.0534 (12)0.0594 (13)0.0630 (13)0.0109 (10)0.0076 (9)0.0177 (11)
Geometric parameters (Å, º) top
Cl1—C31.739 (2)C6—H60.9300
O1—C71.356 (2)C7—C81.479 (3)
O1—C11.399 (2)C8—C131.384 (3)
O2—C71.195 (2)C8—C91.387 (3)
C1—C21.374 (3)C9—C101.378 (3)
C1—C61.374 (3)C9—H90.9300
C2—C31.380 (3)C10—C111.370 (4)
C2—H20.9300C10—H100.9300
C3—C41.374 (3)C11—C121.376 (4)
C4—C51.376 (3)C11—H110.9300
C4—H40.9300C12—C131.371 (4)
C5—C61.379 (3)C12—H120.9300
C5—H50.9300C13—H130.9300
C7—O1—C1118.81 (14)O2—C7—C8125.42 (19)
C2—C1—C6122.04 (19)O1—C7—C8111.50 (15)
C2—C1—O1120.12 (18)C13—C8—C9119.3 (2)
C6—C1—O1117.55 (18)C13—C8—C7117.74 (18)
C1—C2—C3117.83 (17)C9—C8—C7122.95 (18)
C1—C2—H2121.1C10—C9—C8119.6 (2)
C3—C2—H2121.1C10—C9—H9120.2
C4—C3—C2121.76 (19)C8—C9—H9120.2
C4—C3—Cl1119.48 (17)C11—C10—C9120.7 (2)
C2—C3—Cl1118.73 (14)C11—C10—H10119.7
C3—C4—C5118.8 (2)C9—C10—H10119.7
C3—C4—H4120.6C10—C11—C12119.8 (2)
C5—C4—H4120.6C10—C11—H11120.1
C4—C5—C6120.99 (19)C12—C11—H11120.1
C4—C5—H5119.5C13—C12—C11120.2 (2)
C6—C5—H5119.5C13—C12—H12119.9
C1—C6—C5118.6 (2)C11—C12—H12119.9
C1—C6—H6120.7C12—C13—C8120.4 (2)
C5—C6—H6120.7C12—C13—H13119.8
O2—C7—O1123.08 (19)C8—C13—H13119.8
C7—O1—C1—C261.9 (2)C1—O1—C7—C8172.24 (16)
C7—O1—C1—C6124.2 (2)O2—C7—C8—C137.9 (3)
C6—C1—C2—C30.7 (3)O1—C7—C8—C13172.14 (18)
O1—C1—C2—C3172.97 (16)O2—C7—C8—C9173.4 (2)
C1—C2—C3—C40.5 (3)O1—C7—C8—C96.6 (3)
C1—C2—C3—Cl1178.84 (14)C13—C8—C9—C101.0 (3)
C2—C3—C4—C51.5 (3)C7—C8—C9—C10179.7 (2)
Cl1—C3—C4—C5179.86 (16)C8—C9—C10—C110.2 (4)
C3—C4—C5—C61.4 (3)C9—C10—C11—C120.4 (4)
C2—C1—C6—C50.8 (3)C10—C11—C12—C130.2 (4)
O1—C1—C6—C5173.01 (18)C11—C12—C13—C80.6 (4)
C4—C5—C6—C10.3 (3)C9—C8—C13—C121.2 (3)
C1—O1—C7—O27.8 (3)C7—C8—C13—C12180.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.463.319 (3)154
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H9ClO2
Mr232.65
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)6.0734 (6), 8.389 (1), 11.747 (2)
α, β, γ (°)107.89 (1), 102.98 (1), 93.25 (1)
V3)549.89 (13)
Z2
Radiation typeCu Kα
µ (mm1)2.92
Crystal size (mm)0.60 × 0.55 × 0.50
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.197, 0.233
No. of measured, independent and
observed [I > 2σ(I)] reflections
2143, 1947, 1872
Rint0.086
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.135, 1.10
No. of reflections1947
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.34

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.463.319 (3)153.7
Symmetry code: (i) x1, y, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007a). Acta Cryst. E63, o3756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007b). Acta Cryst. E63, o3801.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007c). Acta Cryst. E63, o4286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds