metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1001-m1002

(E)-1-Ferrocenyl-3-phenyl­prop-2-en-1-one

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, and bTechnology Center, Jiuquan Iron and Steel (Group) Co. Ltd, Jiayuguan 735100, People's Republic of China
*Correspondence e-mail: xiaolanliu998@yahoo.com.cn

(Received 19 June 2008; accepted 1 July 2008; online 5 July 2008)

The title compound, [Fe(C5H5)(C14H11O)], exists as the E isomer, and the substituent is fully conjugated with the attached five-membered ring. In the ferrocene unit, the substituted cyclo­penta­dienyl ring (Cps) plane and unsubstituted cyclo­penta­dienyl ring (Cp) plane are almost parallel, and the C atoms in Cp and Cps are in an eclipsed conformation. In the crystal structure, mol­ecules are linked into C(5) chains via inter­molecular C—H⋯O hydrogen bonds, and neighbouring chains are assembled into sheets by inter­molecular C—H⋯π(arene) hydrogen bonds along the c axis.

Related literature

For related literature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew Chem. Int. Ed. Engl. 34, 1555-1573.]); Edwards et al. (1975[Edwards, E. I., Epton, R. & Marr, G. (1975). J. Organomet. Chem. 85, C23.]); Huang et al. (1998[Huang, G.-S., Chen, B.-H., Liu, C.-M., Ma, Y.-X. & Liu, Y.-H. (1998). Transition Met. Chem. 23, 589-592.]); Liang et al. (1998[Liang, Y.-M., Chen, B.-H., Jin, H.-W., Ma, Y.-X. & Liu, Y.-H. (1998). Synth. React. Inorg. Met. Org. Chem. 28, 803-810.]); Liu et al. (2001[Liu, M., Wilairat, P. & Go, M. L. (2001). J. Med. Chem. 44, 4443-4452.], 2003[Liu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M.-L. (2003). Bioorg. Med. Chem. 11, 2729-2738.], 2008[Liu, X.-L., Tong, B.-W., Zhao, Y., Ye, J. & Liu, Y.-H. (2008). Acta Cryst. E64, m209.]); Shi et al. (2004[Shi, Y. C., Yang, H.-M., Song, H.-B. & Liu, Y.-H. (2004). Polyhedron, 23, 1541-1546.]); Yarishkin et al. (2008[Yarishkin, O. V., Ryu, H. W., Park, J. Y., Yang, M. S., Hong, S. G. & Park, K. H. (2008). Bioorg. Med. Chem. Lett. 18, 137-140.]); Zhai et al. (1999[Zhai, L., Chen, M., Blom, J., Theander, T. G., Christensen, S. B. & Kharazmi, A. (1999). Antimicrob. Agents Chemother. 43, 793-803.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C14H11O)]

  • Mr = 316.17

  • Orthorhombic, P n a 21

  • a = 22.717 (3) Å

  • b = 5.8173 (9) Å

  • c = 11.1789 (17) Å

  • V = 1477.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 296 (2) K

  • 0.32 × 0.28 × 0.27 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.272, Tmax = 0.318 (expected range = 0.650–0.760)

  • 9864 measured reflections

  • 2547 independent reflections

  • 2409 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.055

  • S = 1.00

  • 2547 reflections

  • 190 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1181 Friedel pairs

  • Flack parameter: 0.013 (16)

Table 1
Dihedral angles (°) for selected planes

  Atoms defining plane 1-Plane 2-Plane Cp plane
1-Plane C11–C13/O1
2-Plane C14–C19 33.0 (1)
Cp plane C1–C5 17.9 (2) 50.6 (4)
Cps plane C6–C10 17.0 (1) 49.9 (1) 1.8 (1)

Table 2
Hydrogen-bond geometry (Å, °)

δ is the angle that the C1/H1 group makes with the normal to the Cp plane, and Cg3 is the centroid of the Cp ring.

D—H⋯A D—H H⋯A D⋯A D—H⋯A
C9—H9⋯O1i 0.98 2.67 3.538 (3) 148
C1—H1⋯Cg3ii 0.98 2.75 3.596 (2) 145 (δ = 64)
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, -y, z+{1\over2}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Chalcone and its derivatives, as a natural products, have shown stronge antibacterial, antifungal, antitumor and anti-inflammatory properties, especially antileishmanial, and antimalarial (Zhai et al., 1999; Liu et al., 2001, 2003). Some chalcones demonstrated the ability to block voltage-dependent potassium channels (Yarishkin et al., 2008). It was proved that the replacement of the aromatic group by the ferrocenyl moiety in penicillins and cephalosporins could improve their antibiotic activity (Edwards et al., 1975). As ongoing research (Liu et al., 2008; Shi et al., 2004; Liang et al., 1998), we report herein the structure of the title compound.

The molecule of the title compound exists as the most stable configuration of (E)-isomer (Fig.1), and all carbon atoms are sp2-hybridized. Although the carbon atoms and a oxygen atom form a large conjugated system, the Cps (the substituted cyclopentadienyl ring) plane and 1-plane (defined by the atoms of C11, C12, O1 and C13) and 2-plane (the phenyl ring plane) are not coplanar (Table 1). In the ferrocene moiety, the Cps plane and Cp (the unsubstituted cyclopentadienyl ring) plane are almost parallel, and the carbon atoms of Cp and Cps are in the eclipsed conformation. The Fe atom is slightly nearer to the Cps plane because the Fe–Cgs and Fe–Cg distances are 1.651 (1) and 1.658 (1) Å, respectively, where Cgs and Cg are the centroids of Cps and Cp, respectively. The Cgs-Fe-Cg angle is 178.0 (2)°.

In its packing structure, the molecules are linked into C(5) (Bernstein et al., 1995) chains via C–H···O inter-molecular hydrogen-bonds. Further more the chains and their neighboring inverse parallel chains are made up into sheets by C–H···π (arene) inter-molecular hydrogen-bonds along the c axis (Fig. 2, Table 2).

Related literature top

For related literature, see: Bernstein et al. (1995); Edwards et al. (1975); Huang et al. (1998); Liang et al. (1998); Liu et al. (2001, 2003, 2008); Shi et al. (2004); Yarishkin et al. (2008); Zhai et al. (1999).

Experimental top

The title compound was synthesized according to the literature procedure (Huang et al. 1998). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in dichloromethane/ether (5:1 v/v) at room temperature over a period of 4 d.

Refinement top

After their location in a difference map, all H atoms were fixed geometrically at ideal positions and allowed to ride on the parent C atoms, with C—H distances of 0.93 – 0.98, and with Uiso(H) values of 1.2Ueq (C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the inter-molecular hydrogen bonds of C–H···O and C–H···π as dashed lines. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted.
(E)-1-Ferrocenyl-3-phenylprop-2-en-1-one top
Crystal data top
[Fe(C5H5)(C14H11O)]Dx = 1.422 Mg m3
Mr = 316.17Melting point: 416 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P2c-2nCell parameters from 5183 reflections
a = 22.717 (3) Åθ = 2.5–27.5°
b = 5.8173 (9) ŵ = 1.02 mm1
c = 11.1789 (17) ÅT = 296 K
V = 1477.3 (4) Å3Block, dark-red
Z = 40.32 × 0.28 × 0.27 mm
F(000) = 656.0
Data collection top
Bruker SMART 1000 CCD
diffractometer
2547 independent reflections
Radiation source: fine-focus sealed tube2409 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2727
Tmin = 0.272, Tmax = 0.318k = 66
9864 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.1121P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2547 reflectionsΔρmax = 0.11 e Å3
190 parametersΔρmin = 0.31 e Å3
1 restraintAbsolute structure: Flack (1983), 1181 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.013 (16)
Crystal data top
[Fe(C5H5)(C14H11O)]V = 1477.3 (4) Å3
Mr = 316.17Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 22.717 (3) ŵ = 1.02 mm1
b = 5.8173 (9) ÅT = 296 K
c = 11.1789 (17) Å0.32 × 0.28 × 0.27 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2547 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2409 reflections with I > 2σ(I)
Tmin = 0.272, Tmax = 0.318Rint = 0.024
9864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.055Δρmax = 0.11 e Å3
S = 1.00Δρmin = 0.31 e Å3
2547 reflectionsAbsolute structure: Flack (1983), 1181 Friedel pairs
190 parametersAbsolute structure parameter: 0.013 (16)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.306705 (9)0.01465 (4)0.47590 (5)0.03375 (9)
C10.39580 (9)0.0389 (4)0.4986 (2)0.0520 (7)
H10.42580.00990.44100.062*
C20.36997 (8)0.2578 (4)0.50508 (19)0.0486 (5)
H20.37890.38880.45300.058*
C30.32944 (10)0.2565 (4)0.6003 (2)0.0511 (5)
H30.30500.38650.62570.061*
C40.32990 (12)0.0378 (5)0.6524 (2)0.0578 (7)
H40.30590.01170.72050.069*
C50.37087 (11)0.0994 (4)0.5899 (2)0.0563 (6)
H50.38060.26020.60700.068*
C60.26327 (8)0.2636 (4)0.40577 (18)0.0403 (4)
H60.27110.42530.42430.048*
C70.22257 (8)0.1193 (4)0.4653 (2)0.0474 (5)
H70.19780.16330.53330.057*
C80.22496 (9)0.1022 (4)0.4118 (2)0.0464 (5)
H80.20190.23630.43660.056*
C90.26678 (8)0.0985 (4)0.31925 (18)0.0396 (4)
H90.27720.22780.26720.047*
C100.29116 (8)0.1304 (3)0.31345 (17)0.0355 (4)
C110.33810 (8)0.2129 (3)0.23428 (18)0.0379 (4)
C120.37129 (9)0.0364 (3)0.16579 (18)0.0374 (4)
H120.37230.11410.19380.045*
C130.39948 (8)0.0888 (4)0.06591 (18)0.0381 (4)
H130.39760.24110.04090.046*
C140.43347 (7)0.0699 (4)0.0094 (2)0.0390 (4)
C150.45591 (9)0.2760 (4)0.0339 (2)0.0527 (6)
H150.44900.31800.11290.063*
C160.48835 (10)0.4192 (4)0.0396 (3)0.0685 (8)
H160.50370.55570.00960.082*
C170.49790 (11)0.3598 (6)0.1577 (3)0.0731 (9)
H170.51960.45650.20710.088*
C180.47553 (11)0.1595 (6)0.2020 (2)0.0706 (8)
H180.48150.12120.28190.085*
C190.44402 (11)0.0134 (4)0.1287 (2)0.0551 (7)
H190.42970.12430.15920.066*
O10.34891 (7)0.4180 (3)0.22424 (15)0.0537 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03735 (13)0.03089 (14)0.03302 (14)0.00503 (9)0.00318 (15)0.00068 (16)
C10.0383 (9)0.0610 (14)0.0566 (19)0.0006 (9)0.0049 (10)0.0147 (12)
C20.0470 (10)0.0456 (12)0.0533 (14)0.0170 (9)0.0010 (10)0.0027 (10)
C30.0575 (13)0.0428 (13)0.0530 (13)0.0073 (10)0.0028 (11)0.0170 (11)
C40.0663 (15)0.0747 (19)0.0325 (12)0.0195 (13)0.0021 (11)0.0014 (12)
C50.0718 (14)0.0403 (12)0.0567 (15)0.0009 (11)0.0294 (13)0.0010 (11)
C60.0472 (11)0.0342 (11)0.0394 (11)0.0132 (9)0.0020 (9)0.0020 (9)
C70.0396 (9)0.0548 (12)0.0476 (12)0.0150 (8)0.0054 (11)0.0046 (14)
C80.0378 (11)0.0476 (13)0.0539 (12)0.0006 (9)0.0044 (9)0.0009 (11)
C90.0393 (10)0.0385 (11)0.0408 (11)0.0010 (9)0.0019 (8)0.0050 (10)
C100.0413 (10)0.0305 (10)0.0346 (10)0.0065 (8)0.0032 (8)0.0007 (8)
C110.0441 (10)0.0383 (12)0.0314 (10)0.0018 (8)0.0038 (8)0.0008 (9)
C120.0432 (10)0.0308 (11)0.0381 (12)0.0012 (8)0.0005 (8)0.0009 (8)
C130.0378 (9)0.0379 (11)0.0387 (11)0.0001 (9)0.0023 (8)0.0024 (9)
C140.0351 (8)0.0464 (10)0.0357 (12)0.0030 (7)0.0003 (9)0.0035 (11)
C150.0501 (12)0.0518 (14)0.0563 (13)0.0021 (10)0.0126 (10)0.0032 (11)
C160.0554 (12)0.0530 (13)0.097 (2)0.0041 (10)0.0196 (16)0.0093 (19)
C170.0561 (14)0.087 (2)0.076 (2)0.0034 (15)0.0202 (14)0.0359 (17)
C180.0613 (14)0.110 (2)0.0409 (13)0.0016 (16)0.0054 (11)0.0166 (15)
C190.0490 (13)0.0759 (19)0.0402 (14)0.0005 (11)0.0025 (11)0.0008 (11)
O10.0756 (10)0.0308 (8)0.0548 (10)0.0035 (7)0.0113 (8)0.0010 (8)
Geometric parameters (Å, º) top
Fe1—C92.032 (2)C7—H70.9800
Fe1—C102.033 (2)C8—C91.405 (3)
Fe1—C22.0427 (19)C8—H80.9800
Fe1—C32.044 (2)C9—C101.443 (3)
Fe1—C12.045 (2)C9—H90.9800
Fe1—C42.047 (2)C10—C111.467 (3)
Fe1—C52.047 (2)C11—O11.223 (2)
Fe1—C62.0513 (19)C11—C121.486 (3)
Fe1—C82.055 (2)C12—C131.323 (3)
Fe1—C72.0673 (17)C12—H120.9300
C1—C21.404 (3)C13—C141.469 (3)
C1—C51.417 (4)C13—H130.9300
C1—H10.9800C14—C151.390 (3)
C2—C31.407 (3)C14—C191.393 (3)
C2—H20.9800C15—C161.383 (4)
C3—C41.399 (3)C15—H150.9300
C3—H30.9800C16—C171.382 (4)
C4—C51.411 (4)C16—H160.9300
C4—H40.9800C17—C181.364 (4)
C5—H50.9800C17—H170.9300
C6—C71.415 (3)C18—C191.381 (4)
C6—C101.438 (3)C18—H180.9300
C6—H60.9800C19—H190.9300
C7—C81.421 (3)
C9—Fe1—C1041.60 (8)C3—C4—H4125.9
C9—Fe1—C2106.59 (9)C5—C4—H4125.9
C10—Fe1—C2123.51 (8)Fe1—C4—H4125.9
C9—Fe1—C3122.27 (9)C4—C5—C1107.4 (2)
C10—Fe1—C3159.53 (9)C4—C5—Fe169.84 (14)
C2—Fe1—C340.28 (9)C1—C5—Fe169.67 (12)
C9—Fe1—C1122.18 (10)C4—C5—H5126.3
C10—Fe1—C1108.15 (9)C1—C5—H5126.3
C2—Fe1—C140.18 (8)Fe1—C5—H5126.3
C3—Fe1—C167.54 (9)C7—C6—C10107.81 (18)
C9—Fe1—C4158.46 (10)C7—C6—Fe170.51 (11)
C10—Fe1—C4158.91 (9)C10—C6—Fe168.72 (10)
C2—Fe1—C467.63 (9)C7—C6—H6126.1
C3—Fe1—C440.01 (9)C10—C6—H6126.1
C1—Fe1—C467.71 (11)Fe1—C6—H6126.1
C9—Fe1—C5158.82 (10)C6—C7—C8108.35 (19)
C10—Fe1—C5123.03 (9)C6—C7—Fe169.30 (10)
C2—Fe1—C567.91 (9)C8—C7—Fe169.34 (10)
C3—Fe1—C567.65 (10)C6—C7—H7125.8
C1—Fe1—C540.52 (10)C8—C7—H7125.8
C4—Fe1—C540.34 (10)Fe1—C7—H7125.8
C9—Fe1—C669.22 (8)C9—C8—C7108.77 (19)
C10—Fe1—C641.22 (8)C9—C8—Fe169.01 (11)
C2—Fe1—C6161.06 (8)C7—C8—Fe170.31 (11)
C3—Fe1—C6157.58 (9)C9—C8—H8125.6
C1—Fe1—C6125.31 (8)C7—C8—H8125.6
C4—Fe1—C6122.96 (9)Fe1—C8—H8125.6
C5—Fe1—C6108.95 (9)C8—C9—C10107.86 (18)
C9—Fe1—C840.22 (8)C8—C9—Fe170.77 (12)
C10—Fe1—C868.56 (8)C10—C9—Fe169.27 (11)
C2—Fe1—C8121.33 (9)C8—C9—H9126.1
C3—Fe1—C8107.15 (10)C10—C9—H9126.1
C1—Fe1—C8157.07 (10)Fe1—C9—H9126.1
C4—Fe1—C8123.54 (10)C6—C10—C9107.21 (17)
C5—Fe1—C8160.26 (10)C6—C10—C11125.25 (18)
C6—Fe1—C868.13 (9)C9—C10—C11127.45 (18)
C9—Fe1—C768.19 (9)C6—C10—Fe170.06 (11)
C10—Fe1—C768.41 (9)C9—C10—Fe169.13 (11)
C2—Fe1—C7157.00 (9)C11—C10—Fe1123.27 (13)
C3—Fe1—C7122.13 (10)O1—C11—C10121.38 (18)
C1—Fe1—C7161.47 (9)O1—C11—C12121.64 (18)
C4—Fe1—C7108.53 (11)C10—C11—C12116.97 (17)
C5—Fe1—C7124.88 (11)C13—C12—C11121.42 (19)
C6—Fe1—C740.19 (8)C13—C12—H12119.3
C8—Fe1—C740.35 (9)C11—C12—H12119.3
C2—C1—C5108.1 (2)C12—C13—C14126.4 (2)
C2—C1—Fe169.83 (11)C12—C13—H13116.8
C5—C1—Fe169.81 (12)C14—C13—H13116.8
C2—C1—H1125.9C15—C14—C19118.3 (2)
C5—C1—H1125.9C15—C14—C13122.3 (2)
Fe1—C1—H1125.9C19—C14—C13119.4 (2)
C1—C2—C3107.9 (2)C16—C15—C14120.5 (3)
C1—C2—Fe169.98 (11)C16—C15—H15119.7
C3—C2—Fe169.92 (11)C14—C15—H15119.7
C1—C2—H2126.1C17—C16—C15120.0 (3)
C3—C2—H2126.1C17—C16—H16120.0
Fe1—C2—H2126.1C15—C16—H16120.0
C4—C3—C2108.4 (2)C18—C17—C16120.2 (2)
C4—C3—Fe170.09 (12)C18—C17—H17119.9
C2—C3—Fe169.80 (12)C16—C17—H17119.9
C4—C3—H3125.8C17—C18—C19120.2 (2)
C2—C3—H3125.8C17—C18—H18119.9
Fe1—C3—H3125.8C19—C18—H18119.9
C3—C4—C5108.2 (2)C18—C19—C14120.8 (2)
C3—C4—Fe169.90 (13)C18—C19—H19119.6
C5—C4—Fe169.82 (13)C14—C19—H19119.6
C9—Fe1—C1—C277.16 (16)C10—C6—C7—C80.3 (2)
C10—Fe1—C1—C2120.82 (14)Fe1—C6—C7—C858.49 (14)
C3—Fe1—C1—C237.83 (14)C10—C6—C7—Fe158.80 (13)
C4—Fe1—C1—C281.25 (15)C9—Fe1—C7—C683.20 (13)
C5—Fe1—C1—C2119.2 (2)C10—Fe1—C7—C638.26 (12)
C6—Fe1—C1—C2163.27 (13)C2—Fe1—C7—C6164.2 (2)
C8—Fe1—C1—C243.1 (3)C3—Fe1—C7—C6161.47 (13)
C7—Fe1—C1—C2163.1 (3)C1—Fe1—C7—C644.5 (4)
C9—Fe1—C1—C5163.61 (13)C4—Fe1—C7—C6119.50 (15)
C10—Fe1—C1—C5119.96 (14)C5—Fe1—C7—C677.76 (17)
C2—Fe1—C1—C5119.2 (2)C8—Fe1—C7—C6120.1 (2)
C3—Fe1—C1—C581.40 (15)C9—Fe1—C7—C836.94 (14)
C4—Fe1—C1—C537.98 (14)C10—Fe1—C7—C881.88 (15)
C6—Fe1—C1—C577.51 (16)C2—Fe1—C7—C844.1 (3)
C8—Fe1—C1—C5162.3 (2)C3—Fe1—C7—C878.39 (17)
C7—Fe1—C1—C543.9 (4)C1—Fe1—C7—C8164.6 (3)
C5—C1—C2—C30.4 (2)C4—Fe1—C7—C8120.36 (15)
Fe1—C1—C2—C359.90 (14)C5—Fe1—C7—C8162.10 (14)
C5—C1—C2—Fe159.53 (14)C6—Fe1—C7—C8120.1 (2)
C9—Fe1—C2—C1120.56 (15)C6—C7—C8—C90.0 (2)
C10—Fe1—C2—C178.18 (17)Fe1—C7—C8—C958.43 (15)
C3—Fe1—C2—C1118.8 (2)C6—C7—C8—Fe158.46 (14)
C4—Fe1—C2—C181.47 (16)C10—Fe1—C8—C938.75 (13)
C5—Fe1—C2—C137.73 (15)C2—Fe1—C8—C978.34 (15)
C6—Fe1—C2—C146.4 (3)C3—Fe1—C8—C9120.02 (14)
C8—Fe1—C2—C1161.85 (14)C1—Fe1—C8—C947.3 (3)
C7—Fe1—C2—C1166.3 (3)C4—Fe1—C8—C9160.81 (13)
C9—Fe1—C2—C3120.67 (14)C5—Fe1—C8—C9168.5 (2)
C10—Fe1—C2—C3163.06 (13)C6—Fe1—C8—C983.26 (13)
C1—Fe1—C2—C3118.8 (2)C7—Fe1—C8—C9120.2 (2)
C4—Fe1—C2—C337.29 (14)C9—Fe1—C8—C7120.2 (2)
C5—Fe1—C2—C381.03 (16)C10—Fe1—C8—C781.47 (15)
C6—Fe1—C2—C3165.1 (3)C2—Fe1—C8—C7161.44 (14)
C8—Fe1—C2—C379.38 (16)C3—Fe1—C8—C7119.75 (15)
C7—Fe1—C2—C347.6 (3)C1—Fe1—C8—C7167.5 (2)
C1—C2—C3—C40.2 (2)C4—Fe1—C8—C778.97 (17)
Fe1—C2—C3—C459.71 (15)C5—Fe1—C8—C748.3 (3)
C1—C2—C3—Fe159.94 (14)C6—Fe1—C8—C736.97 (14)
C9—Fe1—C3—C4163.52 (14)C7—C8—C9—C100.4 (2)
C10—Fe1—C3—C4163.4 (2)Fe1—C8—C9—C1059.58 (13)
C2—Fe1—C3—C4119.4 (2)C7—C8—C9—Fe159.23 (15)
C1—Fe1—C3—C481.62 (17)C10—Fe1—C9—C8118.64 (17)
C5—Fe1—C3—C437.62 (16)C2—Fe1—C9—C8119.21 (13)
C6—Fe1—C3—C448.0 (3)C3—Fe1—C9—C878.08 (16)
C8—Fe1—C3—C4122.12 (16)C1—Fe1—C9—C8160.23 (13)
C7—Fe1—C3—C480.54 (17)C4—Fe1—C9—C848.3 (3)
C9—Fe1—C3—C277.13 (15)C5—Fe1—C9—C8169.3 (2)
C10—Fe1—C3—C244.0 (3)C6—Fe1—C9—C880.31 (13)
C1—Fe1—C3—C237.74 (14)C7—Fe1—C9—C837.05 (13)
C4—Fe1—C3—C2119.4 (2)C2—Fe1—C9—C10122.15 (12)
C5—Fe1—C3—C281.74 (15)C3—Fe1—C9—C10163.28 (12)
C6—Fe1—C3—C2167.4 (2)C1—Fe1—C9—C1081.12 (13)
C8—Fe1—C3—C2118.52 (14)C4—Fe1—C9—C10166.9 (2)
C7—Fe1—C3—C2160.10 (14)C5—Fe1—C9—C1050.6 (3)
C2—C3—C4—C50.0 (3)C6—Fe1—C9—C1038.33 (11)
Fe1—C3—C4—C559.53 (16)C8—Fe1—C9—C10118.64 (17)
C2—C3—C4—Fe159.53 (15)C7—Fe1—C9—C1081.59 (12)
C9—Fe1—C4—C340.8 (3)C7—C6—C10—C90.5 (2)
C10—Fe1—C4—C3163.9 (2)Fe1—C6—C10—C959.41 (13)
C2—Fe1—C4—C337.54 (14)C7—C6—C10—C11177.20 (18)
C1—Fe1—C4—C381.14 (15)Fe1—C6—C10—C11117.27 (19)
C5—Fe1—C4—C3119.3 (2)C7—C6—C10—Fe159.92 (14)
C6—Fe1—C4—C3160.25 (13)C8—C9—C10—C60.5 (2)
C8—Fe1—C4—C376.15 (17)Fe1—C9—C10—C660.00 (13)
C7—Fe1—C4—C3118.23 (15)C8—C9—C10—C11177.12 (18)
C9—Fe1—C4—C5160.1 (2)Fe1—C9—C10—C11116.59 (19)
C10—Fe1—C4—C544.6 (3)C8—C9—C10—Fe160.53 (14)
C2—Fe1—C4—C581.75 (16)C9—Fe1—C10—C6118.36 (16)
C3—Fe1—C4—C5119.3 (2)C2—Fe1—C10—C6164.95 (12)
C1—Fe1—C4—C538.15 (14)C3—Fe1—C10—C6162.5 (2)
C6—Fe1—C4—C580.46 (17)C1—Fe1—C10—C6123.29 (13)
C8—Fe1—C4—C5164.56 (14)C4—Fe1—C10—C648.3 (3)
C7—Fe1—C4—C5122.48 (15)C5—Fe1—C10—C681.11 (15)
C3—C4—C5—C10.2 (3)C8—Fe1—C10—C680.85 (12)
Fe1—C4—C5—C159.80 (15)C7—Fe1—C10—C637.34 (12)
C3—C4—C5—Fe159.57 (16)C2—Fe1—C10—C976.69 (14)
C2—C1—C5—C40.4 (2)C3—Fe1—C10—C944.1 (3)
Fe1—C1—C5—C459.91 (16)C1—Fe1—C10—C9118.35 (12)
C2—C1—C5—Fe159.54 (15)C4—Fe1—C10—C9166.7 (2)
C9—Fe1—C5—C4159.8 (2)C5—Fe1—C10—C9160.53 (13)
C10—Fe1—C5—C4162.47 (14)C6—Fe1—C10—C9118.36 (16)
C2—Fe1—C5—C480.99 (15)C8—Fe1—C10—C937.51 (12)
C3—Fe1—C5—C437.32 (14)C7—Fe1—C10—C981.02 (12)
C1—Fe1—C5—C4118.4 (2)C9—Fe1—C10—C11121.9 (2)
C6—Fe1—C5—C4118.98 (15)C2—Fe1—C10—C1145.2 (2)
C8—Fe1—C5—C441.1 (3)C3—Fe1—C10—C1177.8 (3)
C7—Fe1—C5—C477.16 (18)C1—Fe1—C10—C113.54 (19)
C9—Fe1—C5—C141.4 (3)C4—Fe1—C10—C1171.5 (3)
C10—Fe1—C5—C179.12 (14)C5—Fe1—C10—C1138.6 (2)
C2—Fe1—C5—C137.42 (12)C6—Fe1—C10—C11119.8 (2)
C3—Fe1—C5—C181.09 (14)C8—Fe1—C10—C11159.39 (19)
C4—Fe1—C5—C1118.4 (2)C7—Fe1—C10—C11157.09 (19)
C6—Fe1—C5—C1122.61 (13)C6—C10—C11—O115.5 (3)
C8—Fe1—C5—C1159.5 (3)C9—C10—C11—O1168.5 (2)
C7—Fe1—C5—C1164.43 (13)Fe1—C10—C11—O1103.5 (2)
C9—Fe1—C6—C780.41 (14)C6—C10—C11—C12165.28 (18)
C10—Fe1—C6—C7119.08 (18)C9—C10—C11—C1210.7 (3)
C2—Fe1—C6—C7160.9 (3)Fe1—C10—C11—C1277.3 (2)
C3—Fe1—C6—C744.9 (3)O1—C11—C12—C1322.2 (3)
C1—Fe1—C6—C7164.17 (16)C10—C11—C12—C13157.06 (18)
C4—Fe1—C6—C779.60 (17)C11—C12—C13—C14179.80 (18)
C5—Fe1—C6—C7122.05 (15)C12—C13—C14—C1521.4 (3)
C8—Fe1—C6—C737.10 (14)C12—C13—C14—C19158.8 (2)
C9—Fe1—C6—C1038.67 (11)C19—C14—C15—C160.7 (3)
C2—Fe1—C6—C1041.8 (3)C13—C14—C15—C16179.1 (2)
C3—Fe1—C6—C10164.0 (2)C14—C15—C16—C171.0 (4)
C1—Fe1—C6—C1076.75 (15)C15—C16—C17—C180.2 (4)
C4—Fe1—C6—C10161.32 (13)C16—C17—C18—C191.0 (4)
C5—Fe1—C6—C10118.87 (13)C17—C18—C19—C141.4 (4)
C8—Fe1—C6—C1081.98 (12)C15—C14—C19—C180.5 (3)
C7—Fe1—C6—C10119.08 (18)C13—C14—C19—C18179.6 (2)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C14H11O)]
Mr316.17
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)22.717 (3), 5.8173 (9), 11.1789 (17)
V3)1477.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.32 × 0.28 × 0.27
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.272, 0.318
No. of measured, independent and
observed [I > 2σ(I)] reflections
9864, 2547, 2409
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.055, 1.00
No. of reflections2547
No. of parameters190
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.31
Absolute structureFlack (1983), 1181 Friedel pairs
Absolute structure parameter0.013 (16)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Dihedral angles (°) for selected planes top
Atoms defining plane1-Plane2-PlaneCp plane
1-PlaneC11–C13/O1
2-PlaneC14–C1933.0 (1)
Cp planeC1–C517.9 (2)50.6 (4)
Cps planeC6–C1017.0 (1)49.9 (1)1.8 (1)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.982.673.538 (3)148
C1—H1···Cg3ii0.982.753.596 (2)145 (δ = 64)
δ is the angle the C1/H1 group makes with the normal to the Cp plane, and Cg3 is the centroid of the Cp ring. Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, z+1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Yangzhou University (No. 2006XJJ03) for financial support of this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEdwards, E. I., Epton, R. & Marr, G. (1975). J. Organomet. Chem. 85, C23.  CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuang, G.-S., Chen, B.-H., Liu, C.-M., Ma, Y.-X. & Liu, Y.-H. (1998). Transition Met. Chem. 23, 589–592.  Web of Science CrossRef CAS Google Scholar
First citationLiang, Y.-M., Chen, B.-H., Jin, H.-W., Ma, Y.-X. & Liu, Y.-H. (1998). Synth. React. Inorg. Met. Org. Chem. 28, 803–810.  CrossRef CAS Google Scholar
First citationLiu, X.-L., Tong, B.-W., Zhao, Y., Ye, J. & Liu, Y.-H. (2008). Acta Cryst. E64, m209.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M.-L. (2003). Bioorg. Med. Chem. 11, 2729–2738.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, M., Wilairat, P. & Go, M. L. (2001). J. Med. Chem. 44, 4443–4452.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y. C., Yang, H.-M., Song, H.-B. & Liu, Y.-H. (2004). Polyhedron, 23, 1541–1546.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYarishkin, O. V., Ryu, H. W., Park, J. Y., Yang, M. S., Hong, S. G. & Park, K. H. (2008). Bioorg. Med. Chem. Lett. 18, 137–140.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhai, L., Chen, M., Blom, J., Theander, T. G., Christensen, S. B. & Kharazmi, A. (1999). Antimicrob. Agents Chemother. 43, 793–803.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1001-m1002
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds