organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2′-Methyl-2′-nitro-1′-phenyl-2′,3′,5′,6′,7′,7a'-hexa­hydro­spiro­[indoline-3,3′-1′H-pyrrolizin]-2-one

aDepartment of Chemistry, University of Mazandaran, 47415 Babolsar, Iran
*Correspondence e-mail: ysarrfi@umz.ac.ir

(Received 23 June 2008; accepted 5 July 2008; online 16 July 2008)

The title compound, C21H21N3O3, was synthesized by a multi-component 1,3-dipolar cyclo­addition of azomethine ylide, derived from isatin and proline by a deca­rboxylative route, and (E)-1-phenyl-2-nitro­propene. In the mol­ecule, the spiro junction links a planar oxindole ring and a pyrrolidine ring in an envelope conformation. The mol­ecular packing is stabilized by an inter­molecular N—H⋯N inter­action of the oxindole and pyrrolizidine rings.

Related literature

For related literature, see: Daly et al. (1986[Daly, J. W., Spande, T. W., Whittaker, N., Highet, R. J., Feigl, D., Noshimori, N., Tokuyama, T. & Meyers, C. W. (1986). J. Nat. Prod. 46, 210-???.]); Grigg & Sridharan (1993[Grigg, R. & Sridharan, V. (1993). Advances in Cycloaddition, edited by D. P. Curran, Vol. 3, p. 161. London: Jai.]); Padwa (1984[Padwa, A. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vols. 1 and 2. New York: Wiley.]); Usha, Selvanayagam, Velmurugan, Ravikumar & Poornachandran (2005[Usha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K. & Poornachandran, M. (2005). Acta Cryst. E61, o3312-o3314.]); Usha, Selvanayagam, Velmurugan, Ravikumar & Raghunathan (2005[Usha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K. & Raghunathan, R. (2005). Acta Cryst. E61, o3299-o3301.]); Waldmann (1995[Waldmann, H. (1995). Synlett, pp. 133-141.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21N3O3

  • Mr = 363.41

  • Monoclinic, P 21 /n

  • a = 7.8524 (16) Å

  • b = 25.656 (6) Å

  • c = 9.1767 (19) Å

  • β = 110.489 (4)°

  • V = 1731.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • 0.21 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.989

  • 16064 measured reflections

  • 3773 independent reflections

  • 2183 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.102

  • S = 1.01

  • 3773 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1′—H1′⋯N1i 0.85 2.21 2.992 (3) 151
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multicomponent 1,3-dipolar cycloaddition reactions are considered to be one of the most useful processes for the construction of five-membered heterocyclic ring systems (Padwa, 1984; Grigg & Sridharan, 1993). These strategies offer significant advantages over more traditional approaches, allowing the construction of complex molecular architectures from easily available starting materials in a single synthetic operation without the need for isolation of intermediates. Particularly, the chemistry of the azomethine ylide has gained significance in recent years for the construction of nitrogen containing five-membered heterocycles, which are often the central ring systems of numerous natural products (Daly et al., 1986; Waldmann, 1995). In contrast to similar compounds (Usha, Selvanayagam, Velmurugan, Ravikumar & Poornachandran, 2005; Usha, Selvanayagam, Velmurugan, Ravikumar & Raghunathan, 2005); Waldmann (1995)), in which the carbon atom bearing nitro group is bonded to the pyrrolidine ring, in the title compound it is bonded to the oxindole ring (Fig. 1). In the crystal structure, N—H···H hydrogen bonds link neighboring molecules. Molecules (Fig. 2) are also stacked in a side by side fashion along the c axis through π···π interaction and are further linked by a few intermolecular C—H···π interactions,

Related literature top

For related literature, see: Daly et al. (1986); Grigg & Sridharan (1993); Padwa (1984); Usha, Selvanayagam, Velmurugan, Ravikumar & Poornachandran (2005); Usha, Selvanayagam, Velmurugan, Ravikumar & Raghunathan (2005); Waldmann (1995).

Refinement top

The hydrogen atom of the NH group was found in difference Fourier synthesis. The H(C) atom positions were calculated. H(N) atom was refined in isotropic approximation in riding model, the H(C) atoms were refined in isotropic approximation in riding model with with the Uiso(H) parameters equal to 1.2 Ueq(Ni), 1.2 Ueq(Ci) or 1.5 Ueq(Cii), where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of the (CH or CH2) and CH3 carbon atoms to which the corresponding H atoms are bonded.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the numbering scheme for the atoms and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the molecules, viewed down the c axis.
2'-Methyl-2'-nitro-1'-phenyl-2',3',5',6',7',7a'-hexahydrospiro[indoline- 3,3'-1'H-pyrrolizin]-2-one top
Crystal data top
C21H21N3O3F(000) = 768
Mr = 363.41Dx = 1.394 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 792 reflections
a = 7.8524 (16) Åθ = 3–23°
b = 25.656 (6) ŵ = 0.10 mm1
c = 9.1767 (19) ÅT = 120 K
β = 110.489 (4)°Prism, colorless
V = 1731.8 (6) Å30.21 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3773 independent reflections
Radiation source: fine-focus sealed tube2183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.980, Tmax = 0.989k = 3232
16064 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.01P)2 + 1.6P]
where P = (Fo2 + 2Fc2)/3
3773 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C21H21N3O3V = 1731.8 (6) Å3
Mr = 363.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8524 (16) ŵ = 0.10 mm1
b = 25.656 (6) ÅT = 120 K
c = 9.1767 (19) Å0.21 × 0.18 × 0.15 mm
β = 110.489 (4)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3773 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2183 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.989Rint = 0.064
16064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.01Δρmax = 0.25 e Å3
3773 reflectionsΔρmin = 0.28 e Å3
245 parameters
Special details top

Experimental. A mixture of isatin (0.147 g, 1 mmol), proline (0.115 g, 1 mmol), and (E)-1-phenyl-2-nitropropene (0.163 g, 1 mmol) in ethanol (10 ml) was stirred at reflux for 1 h. After completion of the reaction, as indicated by TLC, to the solution was added water (25 ml), and the precipitated solid was separated by filtration. The pure cycloadduct was obtained by recrystallization from ethanol.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1573 (3)0.19274 (7)0.7966 (2)0.0215 (4)
C20.1056 (3)0.17387 (9)0.6367 (3)0.0210 (5)
C30.2848 (3)0.14420 (9)0.6478 (3)0.0218 (5)
C40.3236 (3)0.11281 (9)0.8003 (3)0.0209 (5)
H4A0.22950.08590.77960.025*
C50.2810 (3)0.15438 (9)0.9046 (3)0.0212 (5)
H5A0.39440.17220.96450.025*
C60.1843 (3)0.13826 (9)1.0155 (3)0.0250 (6)
H6A0.27020.12841.11660.030*
H6B0.10050.10970.97350.030*
C70.0836 (3)0.18844 (9)1.0247 (3)0.0273 (6)
H7A0.01400.18171.06400.033*
H7B0.16570.21411.09060.033*
C80.0098 (3)0.20643 (10)0.8562 (3)0.0250 (6)
H8A0.10200.18830.79860.030*
H8B0.01290.24370.84950.030*
C90.4441 (3)0.17830 (9)0.6496 (3)0.0245 (6)
H9A0.54370.15660.64960.037*
H9B0.48120.19960.74130.037*
H9C0.40790.20020.55890.037*
C100.5061 (3)0.08576 (9)0.8734 (3)0.0208 (5)
C110.5235 (3)0.03378 (10)0.8389 (3)0.0285 (6)
H11A0.42850.01730.76220.034*
C120.6799 (4)0.00634 (10)0.9170 (3)0.0333 (6)
H12A0.69050.02820.89020.040*
C130.8199 (3)0.02934 (10)1.0338 (3)0.0298 (6)
H13A0.92260.01011.08940.036*
C140.8070 (3)0.08119 (10)1.0682 (3)0.0280 (6)
H14A0.90180.09721.14650.034*
C150.6529 (3)0.10927 (10)0.9861 (3)0.0254 (6)
H15A0.64750.14461.00680.030*
N20.2395 (3)0.11023 (8)0.5039 (2)0.0241 (5)
O10.2495 (2)0.06314 (7)0.5158 (2)0.0346 (4)
O20.1929 (2)0.13377 (7)0.37859 (19)0.0310 (4)
N1'0.1068 (3)0.21391 (8)0.4167 (2)0.0247 (5)
H1'0.16470.23770.35350.030*
C2'0.0582 (3)0.22165 (9)0.5263 (3)0.0245 (5)
O2'0.1511 (2)0.26105 (6)0.54370 (19)0.0298 (4)
C3A0.0662 (3)0.14082 (9)0.5689 (3)0.0215 (5)
C4'0.1202 (3)0.09354 (9)0.6109 (3)0.0248 (6)
H4D0.04550.07610.69890.030*
C5'0.2865 (3)0.07228 (10)0.5209 (3)0.0271 (6)
H5D0.32240.04030.54820.032*
C6'0.3983 (3)0.09824 (10)0.3915 (3)0.0266 (6)
H6D0.50860.08330.33160.032*
C7'0.3494 (3)0.14616 (10)0.3490 (3)0.0252 (6)
H7D0.42590.16410.26280.030*
C7A0.1828 (3)0.16639 (9)0.4391 (3)0.0231 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0226 (11)0.0248 (11)0.0180 (10)0.0022 (9)0.0084 (9)0.0003 (8)
C20.0219 (13)0.0213 (13)0.0192 (12)0.0010 (10)0.0066 (10)0.0011 (10)
C30.0227 (13)0.0227 (13)0.0187 (12)0.0006 (10)0.0058 (10)0.0016 (10)
C40.0227 (13)0.0201 (12)0.0196 (12)0.0022 (10)0.0072 (10)0.0008 (10)
C50.0206 (12)0.0239 (13)0.0191 (12)0.0012 (10)0.0069 (10)0.0007 (10)
C60.0292 (14)0.0265 (14)0.0219 (13)0.0027 (11)0.0122 (11)0.0021 (11)
C70.0309 (14)0.0290 (14)0.0252 (14)0.0025 (11)0.0136 (12)0.0001 (11)
C80.0219 (13)0.0284 (14)0.0257 (13)0.0032 (11)0.0098 (11)0.0006 (11)
C90.0234 (13)0.0292 (14)0.0227 (13)0.0025 (11)0.0101 (11)0.0005 (11)
C100.0244 (13)0.0231 (13)0.0178 (12)0.0008 (10)0.0110 (10)0.0038 (10)
C110.0307 (15)0.0270 (14)0.0261 (14)0.0025 (11)0.0078 (12)0.0007 (11)
C120.0392 (16)0.0280 (15)0.0337 (15)0.0072 (13)0.0141 (13)0.0019 (12)
C130.0281 (14)0.0364 (15)0.0283 (14)0.0096 (12)0.0141 (12)0.0089 (12)
C140.0236 (14)0.0354 (15)0.0255 (13)0.0004 (11)0.0093 (11)0.0008 (12)
C150.0267 (14)0.0265 (13)0.0253 (13)0.0019 (11)0.0119 (11)0.0012 (11)
N20.0232 (11)0.0297 (12)0.0201 (11)0.0006 (9)0.0084 (9)0.0007 (10)
O10.0474 (12)0.0247 (10)0.0324 (10)0.0009 (9)0.0149 (9)0.0043 (8)
O20.0330 (10)0.0415 (11)0.0188 (9)0.0023 (8)0.0093 (8)0.0017 (8)
N1'0.0249 (11)0.0259 (11)0.0214 (11)0.0018 (9)0.0057 (9)0.0058 (9)
C2'0.0284 (14)0.0247 (13)0.0220 (13)0.0012 (11)0.0107 (11)0.0031 (11)
O2'0.0319 (10)0.0242 (10)0.0318 (10)0.0025 (8)0.0093 (8)0.0024 (8)
C3A0.0217 (13)0.0231 (13)0.0204 (12)0.0022 (10)0.0083 (10)0.0025 (10)
C4'0.0262 (14)0.0244 (13)0.0240 (13)0.0048 (11)0.0090 (11)0.0017 (11)
C5'0.0278 (14)0.0259 (14)0.0298 (14)0.0018 (11)0.0131 (12)0.0023 (11)
C6'0.0205 (13)0.0325 (15)0.0267 (14)0.0033 (11)0.0082 (11)0.0093 (11)
C7'0.0266 (14)0.0293 (14)0.0190 (12)0.0033 (11)0.0071 (11)0.0006 (11)
C7A0.0276 (14)0.0232 (13)0.0200 (13)0.0012 (11)0.0102 (11)0.0019 (10)
Geometric parameters (Å, º) top
N1—C21.461 (3)C10—C111.388 (3)
N1—C81.486 (3)C11—C121.379 (3)
N1—C51.490 (3)C11—H11A0.9300
C2—C3A1.530 (3)C12—C131.372 (3)
C2—C2'1.550 (3)C12—H12A0.9300
C2—C31.571 (3)C13—C141.379 (3)
C3—N21.517 (3)C13—H13A0.9300
C3—C91.522 (3)C14—C151.383 (3)
C3—C41.550 (3)C14—H14A0.9300
C4—C101.521 (3)C15—H15A0.9300
C4—C51.546 (3)N2—O11.213 (2)
C4—H4A0.9800N2—O21.235 (2)
C5—C61.525 (3)N1'—C2'1.348 (3)
C5—H5A0.9800N1'—C7A1.404 (3)
C6—C71.528 (3)N1'—H1'0.8544
C6—H6A0.9700C2'—O2'1.224 (3)
C6—H6B0.9700C3A—C4'1.383 (3)
C7—C81.521 (3)C3A—C7A1.387 (3)
C7—H7A0.9700C4'—C5'1.389 (3)
C7—H7B0.9700C4'—H4D0.9300
C8—H8A0.9700C5'—C6'1.377 (3)
C8—H8B0.9700C5'—H5D0.9300
C9—H9A0.9600C6'—C7'1.384 (3)
C9—H9B0.9600C6'—H6D0.9300
C9—H9C0.9600C7'—C7A1.381 (3)
C10—C151.388 (3)C7'—H7D0.9300
C2—N1—C8118.04 (18)C3—C9—H9C109.5
C2—N1—C5109.64 (18)H9A—C9—H9C109.5
C8—N1—C5108.79 (17)H9B—C9—H9C109.5
N1—C2—C3A119.15 (19)C15—C10—C11117.7 (2)
N1—C2—C2'108.24 (18)C15—C10—C4122.6 (2)
C3A—C2—C2'101.33 (18)C11—C10—C4119.4 (2)
N1—C2—C399.68 (17)C12—C11—C10120.8 (2)
C3A—C2—C3113.59 (18)C12—C11—H11A119.6
C2'—C2—C3115.5 (2)C10—C11—H11A119.6
N2—C3—C9106.34 (19)C13—C12—C11120.7 (2)
N2—C3—C4113.56 (19)C13—C12—H12A119.6
C9—C3—C4112.82 (19)C11—C12—H12A119.6
N2—C3—C2106.86 (17)C12—C13—C14119.4 (2)
C9—C3—C2115.85 (19)C12—C13—H13A120.3
C4—C3—C2101.46 (18)C14—C13—H13A120.3
C10—C4—C5114.60 (18)C15—C14—C13119.9 (2)
C10—C4—C3119.50 (19)C15—C14—H14A120.1
C5—C4—C3100.59 (18)C13—C14—H14A120.1
C10—C4—H4A107.1C14—C15—C10121.3 (2)
C5—C4—H4A107.1C14—C15—H15A119.4
C3—C4—H4A107.1C10—C15—H15A119.4
N1—C5—C6105.17 (18)O1—N2—O2124.0 (2)
N1—C5—C4106.01 (17)O1—N2—C3120.35 (19)
C6—C5—C4119.5 (2)O2—N2—C3115.60 (19)
N1—C5—H5A108.6C2'—N1'—C7A111.4 (2)
C6—C5—H5A108.6C2'—N1'—H1'123.1
C4—C5—H5A108.6C7A—N1'—H1'124.5
C5—C6—C7101.31 (19)O2'—C2'—N1'126.3 (2)
C5—C6—H6A111.5O2'—C2'—C2124.9 (2)
C7—C6—H6A111.5N1'—C2'—C2108.6 (2)
C5—C6—H6B111.5C4'—C3A—C7A118.7 (2)
C7—C6—H6B111.5C4'—C3A—C2133.3 (2)
H6A—C6—H6B109.3C7A—C3A—C2108.1 (2)
C8—C7—C6102.72 (19)C3A—C4'—C5'119.6 (2)
C8—C7—H7A111.2C3A—C4'—H4D120.2
C6—C7—H7A111.2C5'—C4'—H4D120.2
C8—C7—H7B111.2C6'—C5'—C4'120.4 (2)
C6—C7—H7B111.2C6'—C5'—H5D119.8
H7A—C7—H7B109.1C4'—C5'—H5D119.8
N1—C8—C7103.52 (18)C5'—C6'—C7'121.1 (2)
N1—C8—H8A111.1C5'—C6'—H6D119.4
C7—C8—H8A111.1C7'—C6'—H6D119.4
N1—C8—H8B111.1C7A—C7'—C6'117.6 (2)
C7—C8—H8B111.1C7A—C7'—H7D121.2
H8A—C8—H8B109.0C6'—C7'—H7D121.2
C3—C9—H9A109.5C7'—C7A—C3A122.6 (2)
C3—C9—H9B109.5C7'—C7A—N1'126.9 (2)
H9A—C9—H9B109.5C3A—C7A—N1'110.5 (2)
C8—N1—C2—C3A34.1 (3)C4—C10—C11—C12172.1 (2)
C5—N1—C2—C3A91.2 (2)C10—C11—C12—C131.9 (4)
C8—N1—C2—C2'80.8 (2)C11—C12—C13—C143.0 (4)
C5—N1—C2—C2'153.89 (18)C12—C13—C14—C150.7 (4)
C8—N1—C2—C3158.11 (19)C13—C14—C15—C102.9 (4)
C5—N1—C2—C332.8 (2)C11—C10—C15—C143.9 (3)
N1—C2—C3—N2165.61 (17)C4—C10—C15—C14169.5 (2)
C3A—C2—C3—N237.8 (2)C9—C3—N2—O1119.1 (2)
C2'—C2—C3—N278.7 (2)C4—C3—N2—O15.6 (3)
N1—C2—C3—C976.1 (2)C2—C3—N2—O1116.6 (2)
C3A—C2—C3—C9156.02 (19)C9—C3—N2—O261.1 (2)
C2'—C2—C3—C939.5 (3)C4—C3—N2—O2174.21 (19)
N1—C2—C3—C446.4 (2)C2—C3—N2—O263.2 (2)
C3A—C2—C3—C481.4 (2)C7A—N1'—C2'—O2'174.3 (2)
C2'—C2—C3—C4162.10 (19)C7A—N1'—C2'—C21.2 (3)
N2—C3—C4—C1077.2 (3)N1—C2—C2'—O2'47.5 (3)
C9—C3—C4—C1043.9 (3)C3A—C2—C2'—O2'173.6 (2)
C2—C3—C4—C10168.54 (19)C3—C2—C2'—O2'63.2 (3)
N2—C3—C4—C5156.50 (18)N1—C2—C2'—N1'128.0 (2)
C9—C3—C4—C582.4 (2)C3A—C2—C2'—N1'1.9 (2)
C2—C3—C4—C542.2 (2)C3—C2—C2'—N1'121.3 (2)
C2—N1—C5—C6120.7 (2)N1—C2—C3A—C4'59.9 (4)
C8—N1—C5—C69.7 (2)C2'—C2—C3A—C4'178.4 (3)
C2—N1—C5—C46.8 (2)C3—C2—C3A—C4'57.1 (3)
C8—N1—C5—C4137.19 (19)N1—C2—C3A—C7A120.6 (2)
C10—C4—C5—N1152.38 (19)C2'—C2—C3A—C7A2.1 (2)
C3—C4—C5—N122.8 (2)C3—C2—C3A—C7A122.5 (2)
C10—C4—C5—C689.2 (3)C7A—C3A—C4'—C5'1.6 (3)
C3—C4—C5—C6141.2 (2)C2—C3A—C4'—C5'177.9 (2)
N1—C5—C6—C732.2 (2)C3A—C4'—C5'—C6'0.7 (4)
C4—C5—C6—C7151.0 (2)C4'—C5'—C6'—C7'0.7 (4)
C5—C6—C7—C842.7 (2)C5'—C6'—C7'—C7A1.3 (4)
C2—N1—C8—C7142.8 (2)C6'—C7'—C7A—C3A0.4 (4)
C5—N1—C8—C717.1 (2)C6'—C7'—C7A—N1'179.8 (2)
C6—C7—C8—N137.2 (2)C4'—C3A—C7A—C7'1.0 (4)
C5—C4—C10—C1527.0 (3)C2—C3A—C7A—C7'178.6 (2)
C3—C4—C10—C1592.4 (3)C4'—C3A—C7A—N1'178.8 (2)
C5—C4—C10—C11146.3 (2)C2—C3A—C7A—N1'1.5 (3)
C3—C4—C10—C1194.2 (3)C2'—N1'—C7A—C7'179.9 (2)
C15—C10—C11—C121.5 (4)C2'—N1'—C7A—C3A0.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N1i0.852.212.992 (3)151
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H21N3O3
Mr363.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)7.8524 (16), 25.656 (6), 9.1767 (19)
β (°) 110.489 (4)
V3)1731.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.21 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.980, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
16064, 3773, 2183
Rint0.064
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.103, 1.01
No. of reflections3773
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1'—H1'···N1i0.852.212.992 (3)151
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

We are grateful for the financial support of Mazandaran University of the Islamic Republic of Iran.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationDaly, J. W., Spande, T. W., Whittaker, N., Highet, R. J., Feigl, D., Noshimori, N., Tokuyama, T. & Meyers, C. W. (1986). J. Nat. Prod. 46, 210–???Google Scholar
First citationGrigg, R. & Sridharan, V. (1993). Advances in Cycloaddition, edited by D. P. Curran, Vol. 3, p. 161. London: Jai.  Google Scholar
First citationPadwa, A. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vols. 1 and 2. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K. & Poornachandran, M. (2005). Acta Cryst. E61, o3312–o3314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUsha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K. & Raghunathan, R. (2005). Acta Cryst. E61, o3299–o3301.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWaldmann, H. (1995). Synlett, pp. 133–141.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds