organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A four-armed Schiff base: 6,6′,6′′,6′′′-tetra­meth­­oxy-2,2′,2′′,2′′′-[methane­tetra­yltetra­kis(methylene­nitrilo­methyl­­idyne)]tetra­phenol

aDepartment of Chemistry, Guizhou University, Guiyang 550025, People's Republic of China
*Correspondence e-mail: gqjiang@163.com

(Received 23 June 2008; accepted 4 July 2008; online 12 July 2008)

In the structure of the title compound, C37H40N4O8, penta­erythrityltetra­mine is bonded to four o-vanillin mol­ecules, forming a four-armed Schiff base mol­ecule. These mol­ecules are connected by inter­molecular C—H⋯O hydrogen bonds. Intramolecular C—H⋯N and O—H⋯N hydrogen bonds are also present.

Related literature

For related literature, see: Tanaka et al. (2006[Tanaka, T., Yasuda, Y. & Hayashi, M. (2006). J. Org. Chem. 71, 7091-7093.]); Bernardo et al. (1996[Bernardo, K., Leppard, S., Robert, A., Commenges, G., Dahan, F. & Meunier, B. (1996). Inorg. Chem. 35, 387-396.]); Laliberte et al. (2004[Laliberte, D., Maris, T. & Wuest, J. D. (2004). J. Org. Chem. 69, 1776-1787.]).

[Scheme 1]

Experimental

Crystal data
  • C37H40N4O8

  • Mr = 668.73

  • Triclinic, [P \overline 1]

  • a = 11.3464 (11) Å

  • b = 12.4437 (12) Å

  • c = 13.0523 (14) Å

  • α = 75.861 (7)°

  • β = 88.893 (7)°

  • γ = 78.385 (7)°

  • V = 1749.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 (2) K

  • 0.18 × 0.16 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.987

  • 16510 measured reflections

  • 6221 independent reflections

  • 3077 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.145

  • S = 0.94

  • 6194 reflections

  • 443 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.87 2.592 (3) 147
O4—H4⋯N4 0.82 1.84 2.567 (2) 147
O6—H6⋯N3 0.82 1.89 2.623 (3) 148
O7—H7⋯N2 0.82 1.88 2.612 (3) 148
C27—H27B⋯N1 0.97 2.56 2.936 (3) 103
C26—H26⋯O5i 0.93 2.58 3.309 (3) 136
C28—H28C⋯O2i 0.96 2.57 3.387 (3) 143
C12—H12⋯O6ii 0.93 2.59 3.400 (3) 146
C32—H32⋯O3iii 0.93 2.42 3.289 (3) 155
C36—H36B⋯O8iv 0.97 2.55 3.399 (3) 146
Symmetry codes: (i) -x, -y+2, -z; (ii) -x-1, -y+2, -z; (iii) x+1, y, z; (iv) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases have been intensively investigated during the past decades, mainly because of their strong coordination capability and diverse biological activities, such as antibacterial, antitumor activities, etc. (Tanaka et al., 2006; Bernardo et al., 1996). Pentaerythrityl tetramine and its congeners act as versatile building blocks in supramolecular chemistry and have been widely employed for the synthesis of various spiro crown ethers, spiro-macrocyclic ligands etc. (Laliberte et al., 2004). However, to the best of our knowledge, few Schiff bases and their complexes derived from pentaerythrityl tetramine have been reported. Herein,we present the synthesis and crystal structure of the multidentate Schiff base ligand derived from o-vanillin and pentaerythrityl tetramine.

The molecular structure is shown in Fig.1. The atoms C9, C18, C27, and C36 form a distorted tetrahedral geometry about the central atom C37. The structure reveals four intramolecular O—H···N hydrogen bonds and one C—H···N hydrogen bond as well as five intermolecular C—H···O hydrogen bonds (Table 1). A view of the packing is given in Fig. 2. The molecules are also connected by C—H···π interactions, with C9—H9B···Cg(1) angle of 138 °, C9···Cg(1) distance of 3.595 (3) Å and C14—H14···Cg(4) angle of 157 °, C14···Cg(4) distance of 3.614 (3) Å, where Cg(1) and Cg(4) are the centroids of the phenyl ring formed by atoms C2,C3,C4,C5,C6,C7 and C29,C30,C31,C32,C33,C34 at (1 - x,-y,1 - z) and (1 + x,y,z), respectively.

Related literature top

For related literature, see: Tanaka et al. (2006); Bernardo et al. (1996); Laliberte et al. (2004).

Experimental top

A solution of pentaerythrityl tetramine (0.13 g, 1 mmol) in ethanol (20 ml) was added dropwise while stirring to a solution of o-vanillin (0.68 g, 4 mmol) in ethanol (20 ml),the mixture was stirred for about 2 h at room temperature. The resulting solution was filtered, and after slow evaporation of the solvent for several days, crystals suitable for X-ray diffraction were obtained in a yield of 46.4%.

Refinement top

All H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2–1.5 Ueq (C,O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure shown with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. One-dimensional chains of the Schiff base perpendicular to the bc plane, showing the packing of the compound. Hydrogen bonds and C—H···π interactions are shown as dashed lines. H atoms have been omitted for clarity.
6,6',6'',6'''-tetramethoxy-2,2',2'',2'''- [methanetetrayltetrakis(methylenenitrilomethylidyne)]tetraphenol top
Crystal data top
C37H40N4O8Z = 2
Mr = 668.73F(000) = 708
Triclinic, P1Dx = 1.269 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.3464 (11) ÅCell parameters from 16510 reflections
b = 12.4437 (12) Åθ = 1.0–25.1°
c = 13.0523 (14) ŵ = 0.09 mm1
α = 75.861 (7)°T = 273 K
β = 88.893 (7)°Prism, yellow
γ = 78.385 (7)°0.18 × 0.16 × 0.15 mm
V = 1749.6 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6221 independent reflections
Radiation source: fine-focus sealed tube3077 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1313
Tmin = 0.984, Tmax = 0.987k = 1414
16510 measured reflectionsl = 1315
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.0583P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
6194 reflectionsΔρmax = 0.18 e Å3
443 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0093 (14)
Crystal data top
C37H40N4O8γ = 78.385 (7)°
Mr = 668.73V = 1749.6 (3) Å3
Triclinic, P1Z = 2
a = 11.3464 (11) ÅMo Kα radiation
b = 12.4437 (12) ŵ = 0.09 mm1
c = 13.0523 (14) ÅT = 273 K
α = 75.861 (7)°0.18 × 0.16 × 0.15 mm
β = 88.893 (7)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6221 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3077 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.987Rint = 0.058
16510 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 0.94Δρmax = 0.18 e Å3
6194 reflectionsΔρmin = 0.19 e Å3
443 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6783 (3)0.6040 (3)0.6346 (3)0.1205 (14)
H1A0.73500.58560.59140.181*
H1B0.72080.64570.68160.181*
H1C0.62850.53550.67520.181*
C20.5190 (3)0.7057 (2)0.6164 (2)0.0661 (8)
C30.4819 (3)0.6681 (2)0.7207 (2)0.0689 (8)
H30.51420.61120.76500.083*
C40.3970 (3)0.7138 (2)0.7606 (2)0.0705 (8)
H4A0.37290.68790.83150.085*
C50.3483 (2)0.7971 (2)0.6962 (2)0.0637 (7)
H50.29220.82830.72390.076*
C60.3823 (2)0.8355 (2)0.5891 (2)0.0504 (6)
C70.4681 (2)0.7891 (2)0.5489 (2)0.0561 (7)
C80.3299 (2)0.9225 (2)0.5203 (2)0.0556 (7)
H80.27590.95500.54920.067*
C90.2957 (2)1.0390 (2)0.35387 (19)0.0541 (7)
H9A0.25171.07170.39720.065*
H9B0.35591.09940.31160.065*
C100.7806 (3)1.3762 (3)0.1285 (3)0.1135 (13)
H10A0.75931.44420.17010.170*
H10B0.84501.39530.08320.170*
H10C0.80631.33520.17460.170*
C110.6932 (2)1.2070 (2)0.0018 (2)0.0585 (7)
C120.7994 (2)1.1700 (3)0.0167 (2)0.0672 (8)
H120.87091.21610.01450.081*
C130.8005 (3)1.0645 (3)0.0816 (3)0.0773 (9)
H130.87251.03930.09290.093*
C140.6962 (2)0.9971 (2)0.1292 (2)0.0680 (8)
H140.69790.92590.17250.082*
C150.5875 (2)1.0334 (2)0.11382 (19)0.0511 (7)
C160.5865 (2)1.1396 (2)0.0472 (2)0.0527 (7)
C170.4787 (2)0.9634 (2)0.16885 (19)0.0567 (7)
H170.48220.89270.21210.068*
C180.2728 (2)0.9217 (2)0.21916 (19)0.0540 (7)
H18A0.21740.89170.17070.065*
H18B0.29710.85840.26830.065*
C190.1639 (4)1.4133 (3)0.5082 (3)0.1264 (14)
H19A0.16961.39060.58400.190*
H19B0.12771.49230.48580.190*
H19C0.24291.40040.48030.190*
C200.0741 (2)1.3692 (2)0.3635 (2)0.0667 (8)
C210.1075 (3)1.4562 (2)0.2895 (3)0.0770 (9)
H210.14411.50750.31160.092*
C220.0876 (3)1.4686 (2)0.1828 (3)0.0822 (9)
H220.11171.52720.13340.099*
C230.0320 (2)1.3938 (2)0.1502 (2)0.0727 (8)
H230.01831.40230.07840.087*
C240.0044 (2)1.3052 (2)0.2232 (2)0.0509 (7)
C250.0163 (2)1.2936 (2)0.3301 (2)0.0581 (7)
C260.0634 (2)1.2277 (2)0.1863 (2)0.0547 (7)
H260.07321.23730.11380.066*
C270.1624 (2)1.0776 (2)0.19919 (19)0.0591 (7)
H27A0.10641.04250.15410.071*
H27B0.22971.12600.15500.071*
C280.3376 (3)0.6069 (3)0.0230 (2)0.0883 (10)
H28A0.30910.60530.09120.132*
H28B0.35720.53120.02090.132*
H28C0.40820.63940.03080.132*
C290.2713 (2)0.6854 (2)0.1230 (2)0.0519 (7)
C300.3835 (2)0.6521 (2)0.1727 (2)0.0666 (8)
H300.44890.61860.13940.080*
C310.3984 (3)0.6687 (3)0.2720 (3)0.0782 (9)
H310.47430.64620.30520.094*
C320.3036 (2)0.7176 (2)0.3220 (2)0.0675 (8)
H320.31490.72720.38940.081*
C330.1896 (2)0.7534 (2)0.27244 (19)0.0493 (6)
C340.1742 (2)0.7371 (2)0.1721 (2)0.0472 (6)
C350.0911 (2)0.8099 (2)0.3253 (2)0.0543 (7)
H350.10620.81950.39190.065*
C360.1053 (2)0.9013 (2)0.3478 (2)0.0583 (7)
H36A0.06670.94100.38850.070*
H36B0.13780.84350.39730.070*
C370.2085 (2)0.9849 (2)0.28059 (18)0.0475 (6)
N10.37817 (18)0.99528 (17)0.16006 (15)0.0527 (5)
N20.10224 (18)1.14746 (18)0.24823 (16)0.0586 (6)
N30.01463 (19)0.84665 (17)0.28493 (15)0.0544 (6)
N40.35536 (17)0.95591 (17)0.42188 (17)0.0542 (6)
O10.68132 (17)1.30936 (18)0.06743 (17)0.0877 (6)
O20.48359 (14)1.17979 (14)0.02791 (14)0.0690 (5)
H20.42721.13310.06110.104*
O30.6060 (2)0.6698 (2)0.56997 (16)0.1045 (8)
O40.50509 (17)0.82276 (16)0.44657 (14)0.0791 (6)
H40.46880.87100.41500.119*
O50.24695 (16)0.67307 (15)0.02443 (14)0.0692 (5)
O60.06588 (14)0.77182 (15)0.12026 (13)0.0641 (5)
H60.01640.80140.15700.096*
O70.01615 (18)1.20882 (16)0.40428 (14)0.0870 (7)
H70.04871.17040.37540.131*
O80.0914 (2)1.34865 (17)0.47009 (17)0.1004 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.130 (3)0.122 (3)0.118 (3)0.077 (3)0.002 (3)0.005 (3)
C20.080 (2)0.0671 (19)0.0570 (19)0.0297 (17)0.0043 (16)0.0143 (16)
C30.091 (2)0.0606 (19)0.0545 (19)0.0213 (17)0.0114 (17)0.0093 (16)
C40.087 (2)0.071 (2)0.0492 (17)0.0113 (17)0.0006 (16)0.0090 (16)
C50.0650 (18)0.076 (2)0.0539 (18)0.0153 (16)0.0037 (14)0.0208 (16)
C60.0527 (15)0.0560 (16)0.0465 (16)0.0115 (13)0.0051 (13)0.0200 (14)
C70.0656 (17)0.0617 (18)0.0441 (16)0.0180 (15)0.0041 (14)0.0149 (14)
C80.0527 (16)0.0623 (18)0.0592 (18)0.0135 (14)0.0050 (14)0.0273 (15)
C90.0607 (16)0.0543 (16)0.0512 (16)0.0170 (14)0.0047 (14)0.0160 (14)
C100.117 (3)0.082 (2)0.121 (3)0.005 (2)0.033 (3)0.005 (2)
C110.0613 (18)0.0593 (19)0.0583 (18)0.0161 (15)0.0014 (15)0.0173 (15)
C120.0532 (17)0.076 (2)0.075 (2)0.0103 (15)0.0054 (15)0.0256 (18)
C130.0562 (19)0.088 (2)0.097 (2)0.0291 (18)0.0082 (18)0.030 (2)
C140.0591 (18)0.0647 (19)0.086 (2)0.0271 (16)0.0036 (16)0.0172 (17)
C150.0527 (16)0.0530 (16)0.0543 (16)0.0208 (13)0.0028 (13)0.0176 (14)
C160.0481 (16)0.0660 (18)0.0525 (16)0.0204 (14)0.0039 (13)0.0236 (14)
C170.0643 (18)0.0588 (17)0.0540 (17)0.0225 (15)0.0071 (14)0.0192 (14)
C180.0551 (16)0.0551 (16)0.0571 (16)0.0163 (14)0.0036 (13)0.0197 (14)
C190.164 (4)0.111 (3)0.124 (3)0.049 (3)0.046 (3)0.046 (3)
C200.076 (2)0.0602 (19)0.067 (2)0.0202 (16)0.0088 (16)0.0167 (17)
C210.084 (2)0.0555 (19)0.097 (3)0.0239 (17)0.0023 (19)0.0208 (19)
C220.096 (2)0.064 (2)0.088 (3)0.0369 (18)0.005 (2)0.0059 (19)
C230.084 (2)0.070 (2)0.0649 (19)0.0292 (17)0.0038 (16)0.0058 (17)
C240.0545 (15)0.0473 (16)0.0500 (17)0.0126 (13)0.0033 (13)0.0084 (13)
C250.0637 (17)0.0510 (17)0.0593 (18)0.0201 (14)0.0005 (14)0.0060 (15)
C260.0529 (16)0.0597 (17)0.0521 (16)0.0138 (14)0.0036 (13)0.0132 (14)
C270.0687 (17)0.0664 (17)0.0486 (16)0.0295 (15)0.0004 (13)0.0130 (14)
C280.087 (2)0.094 (2)0.097 (2)0.0184 (19)0.023 (2)0.050 (2)
C290.0546 (17)0.0526 (16)0.0486 (16)0.0155 (13)0.0055 (14)0.0091 (13)
C300.0521 (18)0.0663 (19)0.076 (2)0.0059 (14)0.0028 (16)0.0117 (17)
C310.0482 (18)0.095 (2)0.087 (2)0.0025 (16)0.0133 (17)0.021 (2)
C320.0580 (18)0.084 (2)0.0589 (18)0.0105 (16)0.0107 (15)0.0164 (16)
C330.0467 (15)0.0541 (16)0.0467 (15)0.0128 (13)0.0049 (13)0.0088 (13)
C340.0379 (14)0.0488 (15)0.0529 (16)0.0134 (12)0.0039 (13)0.0048 (13)
C350.0574 (17)0.0608 (17)0.0476 (16)0.0183 (14)0.0043 (14)0.0130 (14)
C360.0566 (16)0.0681 (18)0.0516 (16)0.0115 (14)0.0032 (14)0.0183 (14)
C370.0524 (15)0.0493 (15)0.0433 (15)0.0156 (13)0.0027 (13)0.0120 (13)
N10.0511 (13)0.0596 (14)0.0513 (13)0.0157 (11)0.0025 (11)0.0175 (11)
N20.0651 (14)0.0654 (15)0.0520 (13)0.0311 (12)0.0027 (11)0.0123 (12)
N30.0477 (13)0.0636 (14)0.0534 (13)0.0122 (11)0.0016 (11)0.0162 (11)
N40.0533 (13)0.0612 (14)0.0519 (14)0.0156 (11)0.0086 (11)0.0182 (12)
O10.0758 (14)0.0767 (14)0.0974 (16)0.0167 (12)0.0118 (12)0.0055 (13)
O20.0564 (11)0.0705 (12)0.0794 (13)0.0261 (10)0.0020 (10)0.0061 (10)
O30.1308 (19)0.1312 (19)0.0715 (14)0.0868 (17)0.0009 (13)0.0134 (14)
O40.0976 (14)0.0991 (15)0.0501 (12)0.0504 (12)0.0052 (10)0.0104 (11)
O50.0691 (12)0.0804 (14)0.0596 (12)0.0096 (11)0.0072 (10)0.0249 (11)
O60.0455 (10)0.0858 (13)0.0635 (11)0.0079 (9)0.0075 (9)0.0268 (10)
O70.1317 (18)0.0847 (14)0.0563 (12)0.0599 (14)0.0076 (12)0.0072 (11)
O80.149 (2)0.0852 (15)0.0793 (16)0.0509 (15)0.0278 (14)0.0184 (13)
Geometric parameters (Å, º) top
C1—O31.401 (3)C19—H19B0.9600
C1—H1A0.9600C19—H19C0.9600
C1—H1B0.9600C20—O81.362 (3)
C1—H1C0.9600C20—C211.375 (3)
C2—O31.369 (3)C20—C251.402 (4)
C2—C31.371 (3)C21—C221.381 (4)
C2—C71.400 (3)C21—H210.9300
C3—C41.381 (4)C22—C231.373 (4)
C3—H30.9300C22—H220.9300
C4—C51.369 (3)C23—C241.396 (3)
C4—H4A0.9300C23—H230.9300
C5—C61.397 (3)C24—C251.387 (3)
C5—H50.9300C24—C261.453 (3)
C6—C71.397 (3)C25—O71.353 (3)
C6—C81.447 (3)C26—N21.270 (3)
C7—O41.346 (3)C26—H260.9300
C8—N41.270 (3)C27—N21.469 (3)
C8—H80.9300C27—C371.535 (3)
C9—N41.457 (3)C27—H27A0.9700
C9—C371.535 (3)C27—H27B0.9700
C9—H9A0.9700C28—O51.415 (3)
C9—H9B0.9700C28—H28A0.9600
C10—O11.390 (3)C28—H28B0.9600
C10—H10A0.9600C28—H28C0.9600
C10—H10B0.9600C29—O51.372 (3)
C10—H10C0.9600C29—C301.378 (3)
C11—C121.371 (3)C29—C341.389 (3)
C11—O11.380 (3)C30—C311.381 (4)
C11—C161.392 (3)C30—H300.9300
C12—C131.379 (4)C31—C321.363 (4)
C12—H120.9300C31—H310.9300
C13—C141.365 (4)C32—C331.397 (3)
C13—H130.9300C32—H320.9300
C14—C151.391 (3)C33—C341.393 (3)
C14—H140.9300C33—C351.452 (3)
C15—C161.396 (3)C34—O61.353 (3)
C15—C171.447 (3)C35—N31.270 (3)
C16—O21.356 (3)C35—H350.9300
C17—N11.275 (3)C36—N31.468 (3)
C17—H170.9300C36—C371.525 (3)
C18—N11.454 (3)C36—H36A0.9700
C18—C371.534 (3)C36—H36B0.9700
C18—H18A0.9700O2—H20.8200
C18—H18B0.9700O4—H40.8200
C19—O81.432 (3)O6—H60.8200
C19—H19A0.9600O7—H70.8200
O3—C1—H1A109.5C20—C21—C22121.1 (3)
O3—C1—H1B109.5C20—C21—H21119.5
H1A—C1—H1B109.5C22—C21—H21119.5
O3—C1—H1C109.5C23—C22—C21119.4 (3)
H1A—C1—H1C109.5C23—C22—H22120.3
H1B—C1—H1C109.5C21—C22—H22120.3
O3—C2—C3125.3 (3)C22—C23—C24121.1 (3)
O3—C2—C7114.8 (2)C22—C23—H23119.5
C3—C2—C7119.8 (3)C24—C23—H23119.4
C2—C3—C4120.6 (3)C25—C24—C23118.9 (2)
C2—C3—H3119.7C25—C24—C26121.4 (2)
C4—C3—H3119.7C23—C24—C26119.8 (2)
C5—C4—C3120.3 (3)O7—C25—C24121.4 (2)
C5—C4—H4A119.8O7—C25—C20118.3 (3)
C3—C4—H4A119.8C24—C25—C20120.2 (3)
C4—C5—C6120.4 (3)N2—C26—C24123.1 (2)
C4—C5—H5119.8N2—C26—H26118.4
C6—C5—H5119.8C24—C26—H26118.4
C7—C6—C5119.1 (2)N2—C27—C37112.89 (19)
C7—C6—C8120.2 (2)N2—C27—H27A109.0
C5—C6—C8120.7 (2)C37—C27—H27A109.0
O4—C7—C6122.0 (2)N2—C27—H27B109.0
O4—C7—C2118.3 (2)C37—C27—H27B109.0
C6—C7—C2119.6 (2)H27A—C27—H27B107.8
N4—C8—C6122.1 (2)O5—C28—H28A109.5
N4—C8—H8118.9O5—C28—H28B109.5
C6—C8—H8118.9H28A—C28—H28B109.5
N4—C9—C37111.28 (19)O5—C28—H28C109.5
N4—C9—H9A109.4H28A—C28—H28C109.5
C37—C9—H9A109.4H28B—C28—H28C109.5
N4—C9—H9B109.4O5—C29—C30124.4 (3)
C37—C9—H9B109.4O5—C29—C34115.6 (2)
H9A—C9—H9B108.0C30—C29—C34120.0 (3)
O1—C10—H10A109.5C29—C30—C31119.8 (3)
O1—C10—H10B109.5C29—C30—H30120.1
H10A—C10—H10B109.5C31—C30—H30120.1
O1—C10—H10C109.5C32—C31—C30120.9 (3)
H10A—C10—H10C109.5C32—C31—H31119.5
H10B—C10—H10C109.5C30—C31—H31119.5
C12—C11—O1125.0 (3)C31—C32—C33120.2 (3)
C12—C11—C16120.1 (3)C31—C32—H32119.9
O1—C11—C16114.9 (2)C33—C32—H32119.9
C11—C12—C13120.2 (3)C34—C33—C32119.1 (3)
C11—C12—H12119.9C34—C33—C35121.7 (2)
C13—C12—H12119.9C32—C33—C35119.2 (2)
C14—C13—C12120.3 (3)O6—C34—C29118.8 (2)
C14—C13—H13119.9O6—C34—C33121.2 (2)
C12—C13—H13119.9C29—C34—C33120.0 (2)
C13—C14—C15120.8 (3)N3—C35—C33123.2 (2)
C13—C14—H14119.6N3—C35—H35118.4
C15—C14—H14119.6C33—C35—H35118.4
C14—C15—C16118.7 (2)N3—C36—C37113.1 (2)
C14—C15—C17120.3 (2)N3—C36—H36A109.0
C16—C15—C17120.9 (2)C37—C36—H36A109.0
O2—C16—C11118.4 (2)N3—C36—H36B109.0
O2—C16—C15121.8 (2)C37—C36—H36B109.0
C11—C16—C15119.8 (2)H36A—C36—H36B107.8
N1—C17—C15122.3 (2)C36—C37—C18109.1 (2)
N1—C17—H17118.8C36—C37—C27111.42 (19)
C15—C17—H17118.8C18—C37—C27107.39 (18)
N1—C18—C37111.7 (2)C36—C37—C9108.6 (2)
N1—C18—H18A109.3C18—C37—C9110.63 (19)
C37—C18—H18A109.3C27—C37—C9109.64 (19)
N1—C18—H18B109.3C17—N1—C18119.5 (2)
C37—C18—H18B109.3C26—N2—C27116.9 (2)
H18A—C18—H18B107.9C35—N3—C36117.2 (2)
O8—C19—H19A109.5C8—N4—C9120.7 (2)
O8—C19—H19B109.5C11—O1—C10118.6 (2)
H19A—C19—H19B109.5C16—O2—H2109.5
O8—C19—H19C109.5C2—O3—C1118.8 (2)
H19A—C19—H19C109.5C7—O4—H4109.5
H19B—C19—H19C109.5C29—O5—C28118.0 (2)
O8—C20—C21125.5 (3)C34—O6—H6109.5
O8—C20—C25115.1 (3)C25—O7—H7109.5
C21—C20—C25119.3 (3)C20—O8—C19117.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.872.592 (3)147
O4—H4···N40.821.842.567 (2)147
O6—H6···N30.821.892.623 (3)148
O7—H7···N20.821.882.612 (3)148
C27—H27B···N10.972.562.936 (3)103
C26—H26···O5i0.932.583.309 (3)136
C28—H28C···O2i0.962.573.387 (3)143
C12—H12···O6ii0.932.593.400 (3)146
C32—H32···O3iii0.932.423.289 (3)155
C36—H36B···O8iv0.972.553.399 (3)146
Symmetry codes: (i) x, y+2, z; (ii) x1, y+2, z; (iii) x+1, y, z; (iv) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC37H40N4O8
Mr668.73
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)11.3464 (11), 12.4437 (12), 13.0523 (14)
α, β, γ (°)75.861 (7), 88.893 (7), 78.385 (7)
V3)1749.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.16 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.984, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
16510, 6221, 3077
Rint0.058
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.145, 0.94
No. of reflections6194
No. of parameters443
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.872.592 (3)146.9
O4—H4···N40.821.842.567 (2)147.3
O6—H6···N30.821.892.623 (3)147.5
O7—H7···N20.821.882.612 (3)147.5
C27—H27B···N10.972.562.936 (3)103.4
C26—H26···O5i0.932.583.309 (3)135.7
C28—H28C···O2i0.962.573.387 (3)142.9
C12—H12···O6ii0.932.593.400 (3)145.9
C32—H32···O3iii0.932.423.289 (3)154.9
C36—H36B···O8iv0.972.553.399 (3)146.3
Symmetry codes: (i) x, y+2, z; (ii) x1, y+2, z; (iii) x+1, y, z; (iv) x, y+2, z+1.
 

References

First citationBernardo, K., Leppard, S., Robert, A., Commenges, G., Dahan, F. & Meunier, B. (1996). Inorg. Chem. 35, 387–396.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLaliberte, D., Maris, T. & Wuest, J. D. (2004). J. Org. Chem. 69, 1776–1787.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, T., Yasuda, Y. & Hayashi, M. (2006). J. Org. Chem. 71, 7091–7093.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds