metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridine)bis­­(3-carb­oxy­pyrazine-2-carboxyl­ato)copper(II) dihydrate

aDepartment of Chemistry, Tarbiat Moallem University, 49 Mofateh Avenue, Tehran, Iran, bDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and cDepartment of Biology, Faculty of Science, Shahed University, Opposite Imam Khomeini's Shrine, Tehran-Qom Highway, Tehran, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 23 June 2008; accepted 21 July 2008; online 26 July 2008)

The title six-coordinated distorted octa­hedral complex, [Cu(C6H3N2O4)2(C10H8N2)]·2H2O, consists of two 3-carboxy­pyrazine-2-carboxyl­ate anions and one 2,2′-bipyridine ligand. There is a twofold rotation axis positioned at the CuII center. The N atoms of the pyrazine ring occupy the axial positions and two proton-transferred O atoms of tbe acid together with the two N atoms of the 2,2′-bipyridine ligand complete the equatorial plane. The inter­actions existing in the crystal structure are inter­molecular O—H⋯O hydrogen bonds, and C—H⋯O and C—O⋯π inter­actions (O⋯π =3.145 Å, C—O⋯π = 149.75°).

Related literature

There are several compounds made from pyrazine-2,3-dicarboxylic acid, but most of them are in a polymeric form; see, for example: Tombul et al. (2007[Tombul, M., Güven, K. & Büyükgüngör, O. (2007). Acta Cryst. E63, m1783-m1784.], 2008[Tombul, M., Güven, K. & Svoboda, I. (2008). Acta Cryst. E64, m246-m247.]). For related literature, see: Egli & Sarkhel (2007[Egli, M. & Sarkhel, S. (2007). Acc. Chem. Res. 40, 197-205.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H3N2O4)2(C10H8N2)]·2H2O

  • Mr = 589.96

  • Monoclinic, C 2/c

  • a = 18.3080 (8) Å

  • b = 9.2168 (4) Å

  • c = 16.3235 (7) Å

  • β = 122.480 (5)°

  • V = 2323.59 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 100 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.823, Tmax = 0.823

  • 14982 measured reflections

  • 3500 independent reflections

  • 3289 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.063

  • S = 1.04

  • 3500 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O5i 0.88 1.66 2.5390 (12) 170
O5—H5A⋯O1 0.84 1.89 2.7218 (13) 173
O5—H5B⋯O4ii 0.86 1.84 2.6989 (13) 177
C7—H7A⋯O2ii 0.95 2.57 3.1144 (14) 117
C8—H8A⋯O2ii 0.95 2.45 3.0433 (13) 121
C9—H9A⋯O5iii 0.95 2.55 3.2168 (13) 127
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structure consists of [Cu(2,3-pzdcH)2(2,2'- bpy)]. 2H2O, where pzdcH2 and 2,2'-bpy are pyrazine-2,3-dicarboxylic acid and 2,2'-bipyridine, respectively. The presence of bidentate mono anionic (pzdcH)- and neutral 2,2'-bipyridine ligands results in a neutral complex. The asymmetric unit is given in Fig. 1. The obtained hexacoordinated geometry is distorted octahedral. The bond lengths and angles around the CuII center are all in accordance with the geometrical steric effects.

There is a 2-fold rotation axis positioned at CuII center, transforming one half of the compound to the other.

The main interaction responsible for stabilizing such a framework is O–H···O hydrogen bonds. The water molecule participates in two hydrogen bonds relating two neighboring complexes. There is also a weaker C–H···O which joins the third complex to the series.

The O3–H3O···O5(x, -y, z - 1/2, 1.664 Å) and O5–H5B···O4 (-x + 3/2, -y + 1/2, -z, 1.839 Å) form hydrogen-bonded chains described by C22(14) graph-set descriptor (Fig. 2). Expansion of these chains results in layer. Furthermore, the C–H···O interactions between the complexes themselves help in the stabilization of the layers. In the third dimension, there is a similar layer at about a 4.1 Å distance. These layers are connected to each other via a fascinating C–O···π interaction by C6–O3 and a pyrazine ring (Fig. 3). All factors including O···π distance (3.145 Å), C–O···π angle (α = 149.75°) and dihedral angle between the planes defined by X2C–O and the aromatic system (ω = 79.18°), are in the mentioned range as in the reference [Egli & Sarkhel, 2007].

Figure 4 represents the packing diagram of this crystal lattice.

Related literature top

There are several compounds made by pyrazine-2,3-dicarboxylic acid, but most of them are in a polymeric form, see, for example: Tombul et al. (2007, 2008). For related literature, see: Egli & Sarkhel (2007).

Experimental top

To a 10 ml of a stirring aqueous solution of pyrazine-2,3-dicarboxylic acid (0.084 g, 0.5 mmol) and 2,2'- bipyridine (0.078 g, 0.5 mmol), was added a 0.5 molar equivalent of CuSO4. 5 H2O (0.062 g, 0.25 mmol) at room temperature. A neutral copper(II) complex, [Cu(pzdcH)2(2,2'- bpy)]. 2H2O, was isolated as very light blue crystals. Slow evaporation of the solvent result in product complex in a week.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Graph set descriptor of chains made by hydrogen bonding.
[Figure 3] Fig. 3. C–O···π interaction between complexes.
[Figure 4] Fig. 4. Crystal packing of [Cu(pzdcH)2(2,2'- bpy)]. 2H2O, along c axis.
(2,2'-Bipyridine)bis(3-carboxypyrazine-2-carboxylato)copper(II) dihydrate top
Crystal data top
[Cu(C6H3N2O4)2(C10H8N2)]·2H2OF(000) = 1204
Mr = 589.96Dx = 1.686 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9557 reflections
a = 18.3080 (8) Åθ = 2.6–30.5°
b = 9.2168 (4) ŵ = 1.01 mm1
c = 16.3235 (7) ÅT = 100 K
β = 122.480 (5)°Prism, colourless
V = 2323.59 (18) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
3500 independent reflections
Radiation source: fine-focus sealed tube3289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 30.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2626
Tmin = 0.823, Tmax = 0.823k = 1313
14982 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: mixed
wR(F2) = 0.063H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.04P)2 + 1.2P]
where P = (Fo2 + 2Fc2)/3
3500 reflections(Δ/σ)max = 0.001
177 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu(C6H3N2O4)2(C10H8N2)]·2H2OV = 2323.59 (18) Å3
Mr = 589.96Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.3080 (8) ŵ = 1.01 mm1
b = 9.2168 (4) ÅT = 100 K
c = 16.3235 (7) Å0.20 × 0.20 × 0.20 mm
β = 122.480 (5)°
Data collection top
Bruker SMART APEXII
diffractometer
3500 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3289 reflections with I > 2σ(I)
Tmin = 0.823, Tmax = 0.823Rint = 0.017
14982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.04Δρmax = 0.49 e Å3
3500 reflectionsΔρmin = 0.31 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.367362 (16)0.25000.01104 (5)
O10.91326 (4)0.21893 (8)0.16501 (5)0.01386 (13)
O20.85176 (5)0.08782 (9)0.02861 (6)0.02271 (16)
O30.90660 (5)0.00760 (8)0.12364 (6)0.02014 (15)
H3O0.86580.02820.18040.024*
O40.81385 (5)0.19258 (9)0.16881 (6)0.02211 (16)
N11.02854 (5)0.32913 (9)0.12702 (6)0.01404 (15)
N21.01283 (6)0.27792 (10)0.05007 (6)0.01888 (17)
N30.91587 (5)0.53313 (8)0.19274 (6)0.01230 (14)
C10.96492 (6)0.24626 (10)0.05929 (7)0.01255 (15)
C20.95681 (6)0.22146 (10)0.02994 (7)0.01416 (16)
C31.07722 (7)0.35806 (12)0.01940 (8)0.01958 (19)
H3A1.11870.39830.00790.023*
C41.08554 (7)0.38463 (11)0.10811 (8)0.01748 (18)
H4A1.13210.44260.15560.021*
C50.90413 (6)0.17769 (10)0.08456 (7)0.01334 (16)
C60.88379 (7)0.13731 (10)0.11323 (7)0.01512 (17)
C70.82914 (6)0.52122 (10)0.13793 (7)0.01459 (16)
H7A0.80390.42740.11970.018*
C80.77532 (6)0.64164 (10)0.10722 (7)0.01620 (18)
H8A0.71420.63070.06920.019*
C90.81274 (6)0.77869 (11)0.13324 (7)0.01659 (17)
H9A0.77730.86300.11260.020*
C100.90229 (6)0.79146 (10)0.18959 (7)0.01464 (17)
H10A0.92890.88430.20760.018*
C110.95228 (5)0.66600 (10)0.21923 (6)0.01133 (15)
O50.80282 (5)0.09628 (8)0.20844 (6)0.01843 (14)
H5A0.83350.13290.18970.022*
H5B0.76440.16140.19570.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01075 (8)0.00986 (8)0.01153 (8)0.0000.00533 (6)0.000
O10.0162 (3)0.0146 (3)0.0136 (3)0.0032 (2)0.0099 (3)0.0027 (2)
O20.0255 (4)0.0255 (4)0.0199 (4)0.0116 (3)0.0140 (3)0.0098 (3)
O30.0209 (3)0.0171 (3)0.0184 (3)0.0053 (3)0.0079 (3)0.0022 (3)
O40.0193 (3)0.0250 (4)0.0179 (3)0.0082 (3)0.0072 (3)0.0017 (3)
N10.0152 (3)0.0137 (3)0.0149 (4)0.0000 (3)0.0092 (3)0.0009 (3)
N20.0181 (4)0.0255 (4)0.0168 (4)0.0038 (3)0.0118 (3)0.0035 (3)
N30.0119 (3)0.0124 (3)0.0118 (3)0.0001 (3)0.0058 (3)0.0001 (3)
C10.0141 (4)0.0121 (4)0.0132 (4)0.0018 (3)0.0085 (3)0.0013 (3)
C20.0149 (4)0.0154 (4)0.0132 (4)0.0040 (3)0.0082 (3)0.0019 (3)
C30.0171 (4)0.0257 (5)0.0204 (5)0.0016 (3)0.0131 (4)0.0045 (4)
C40.0156 (4)0.0196 (4)0.0184 (4)0.0010 (3)0.0099 (4)0.0018 (3)
C50.0146 (4)0.0134 (4)0.0133 (4)0.0003 (3)0.0083 (3)0.0002 (3)
C60.0178 (4)0.0169 (4)0.0133 (4)0.0035 (3)0.0101 (4)0.0005 (3)
C70.0122 (4)0.0142 (4)0.0154 (4)0.0007 (3)0.0060 (3)0.0004 (3)
C80.0120 (4)0.0171 (4)0.0162 (4)0.0008 (3)0.0054 (3)0.0010 (3)
C90.0138 (4)0.0149 (4)0.0171 (4)0.0027 (3)0.0057 (3)0.0008 (3)
C100.0144 (4)0.0122 (4)0.0153 (4)0.0006 (3)0.0067 (3)0.0010 (3)
C110.0114 (4)0.0126 (4)0.0100 (4)0.0000 (3)0.0057 (3)0.0003 (3)
O50.0213 (3)0.0156 (3)0.0244 (4)0.0041 (3)0.0163 (3)0.0056 (3)
Geometric parameters (Å, º) top
Cu1—O11.9880 (7)C2—C61.5117 (14)
Cu1—N32.0085 (8)C3—C41.3940 (15)
Cu1—N12.3565 (8)C3—H3A0.9500
O1—C51.2890 (11)C4—H4A0.9500
O2—C51.2243 (12)C7—C81.3869 (13)
O3—C61.3072 (12)C7—H7A0.9500
O3—H3O0.8844C8—C91.3903 (13)
O4—C61.2142 (12)C8—H8A0.9500
N1—C11.3340 (12)C9—C101.3886 (13)
N1—C41.3386 (12)C9—H9A0.9500
N2—C31.3362 (15)C10—C111.3904 (13)
N2—C21.3388 (12)C10—H10A0.9500
N3—C71.3446 (11)C11—C11i1.4754 (17)
N3—C111.3496 (12)O5—H5A0.8419
C1—C21.4012 (13)O5—H5B0.8612
C1—C51.5169 (12)
O1—Cu1—O1i93.03 (4)C4—C3—H3A118.9
O1—Cu1—N3i166.86 (3)N1—C4—C3120.57 (10)
O1—Cu1—N394.19 (3)N1—C4—H4A119.7
O1i—Cu1—N3166.86 (3)C3—C4—H4A119.7
N3i—Cu1—N380.95 (4)O2—C5—O1125.49 (9)
O1—Cu1—N1i91.84 (3)O2—C5—C1118.30 (8)
N3—Cu1—N1i92.57 (3)O1—C5—C1116.20 (8)
O1—Cu1—N176.24 (3)O4—C6—O3124.67 (10)
N3—Cu1—N1100.53 (3)O4—C6—C2121.68 (9)
N1i—Cu1—N1162.80 (4)O3—C6—C2113.34 (8)
C5—O1—Cu1122.13 (6)N3—C7—C8122.08 (9)
C6—O3—H3O109.2N3—C7—H7A119.0
C1—N1—C4118.00 (9)C8—C7—H7A119.0
C1—N1—Cu1107.29 (6)C7—C8—C9118.61 (9)
C4—N1—Cu1134.12 (7)C7—C8—H8A120.7
C3—N2—C2116.72 (9)C9—C8—H8A120.7
C7—N3—C11119.40 (8)C10—C9—C8119.48 (9)
C7—N3—Cu1125.73 (6)C10—C9—H9A120.3
C11—N3—Cu1114.69 (6)C8—C9—H9A120.3
N1—C1—C2120.85 (8)C9—C10—C11118.84 (9)
N1—C1—C5117.05 (8)C9—C10—H10A120.6
C2—C1—C5122.07 (8)C11—C10—H10A120.6
N2—C2—C1121.62 (9)N3—C11—C10121.57 (8)
N2—C2—C6113.75 (8)N3—C11—C11i114.75 (5)
C1—C2—C6124.57 (8)C10—C11—C11i123.67 (5)
N2—C3—C4122.22 (9)H5A—O5—H5B104.5
N2—C3—H3A118.9
O1i—Cu1—O1—C596.65 (7)C3—N2—C2—C6177.66 (9)
N3i—Cu1—O1—C526.65 (17)N1—C1—C2—N20.90 (14)
N3—Cu1—O1—C594.33 (7)C5—C1—C2—N2177.34 (9)
N1i—Cu1—O1—C5172.96 (7)N1—C1—C2—C6175.91 (9)
N1—Cu1—O1—C55.49 (7)C5—C1—C2—C65.84 (14)
O1—Cu1—N1—C18.79 (6)C2—N2—C3—C41.13 (15)
O1i—Cu1—N1—C1101.46 (6)C1—N1—C4—C31.09 (14)
N3i—Cu1—N1—C1164.26 (6)Cu1—N1—C4—C3168.92 (7)
N3—Cu1—N1—C182.99 (6)N2—C3—C4—N10.34 (16)
N1i—Cu1—N1—C155.98 (14)Cu1—O1—C5—O2179.47 (8)
O1—Cu1—N1—C4179.57 (10)Cu1—O1—C5—C11.41 (11)
O1i—Cu1—N1—C487.76 (10)N1—C1—C5—O2171.48 (9)
N3i—Cu1—N1—C46.52 (10)C2—C1—C5—O26.83 (14)
N3—Cu1—N1—C487.79 (10)N1—C1—C5—O17.71 (12)
N1i—Cu1—N1—C4133.24 (9)C2—C1—C5—O1173.98 (9)
O1—Cu1—N3—C715.90 (8)N2—C2—C6—O496.00 (11)
O1i—Cu1—N3—C7107.29 (14)C1—C2—C6—O481.03 (13)
N3i—Cu1—N3—C7176.39 (10)N2—C2—C6—O377.89 (11)
N1i—Cu1—N3—C776.14 (8)C1—C2—C6—O3105.07 (11)
N1—Cu1—N3—C792.66 (8)C11—N3—C7—C80.14 (14)
O1—Cu1—N3—C11169.01 (6)Cu1—N3—C7—C8175.02 (7)
O1i—Cu1—N3—C1167.81 (15)N3—C7—C8—C90.79 (15)
N3i—Cu1—N3—C111.30 (5)C7—C8—C9—C100.57 (15)
N1i—Cu1—N3—C1198.96 (6)C8—C9—C10—C110.53 (15)
N1—Cu1—N3—C1192.25 (7)C7—N3—C11—C101.31 (13)
C4—N1—C1—C21.68 (14)Cu1—N3—C11—C10176.74 (7)
Cu1—N1—C1—C2170.83 (7)C7—N3—C11—C11i178.90 (9)
C4—N1—C1—C5176.65 (8)Cu1—N3—C11—C11i3.47 (12)
Cu1—N1—C1—C510.84 (9)C9—C10—C11—N31.50 (14)
C3—N2—C2—C10.53 (14)C9—C10—C11—C11i178.73 (10)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O5ii0.881.662.5390 (12)170
O5—H5A···O10.841.892.7218 (13)173
O5—H5B···O4iii0.861.842.6989 (13)177
C7—H7A···O2iii0.952.573.1144 (14)117
C8—H8A···O2iii0.952.453.0433 (13)121
C9—H9A···O5iv0.952.553.2168 (13)127
Symmetry codes: (ii) x, y, z1/2; (iii) x+3/2, y+1/2, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C6H3N2O4)2(C10H8N2)]·2H2O
Mr589.96
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)18.3080 (8), 9.2168 (4), 16.3235 (7)
β (°) 122.480 (5)
V3)2323.59 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.823, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
14982, 3500, 3289
Rint0.017
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.063, 1.04
No. of reflections3500
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O5i0.881.662.5390 (12)170
O5—H5A···O10.841.892.7218 (13)173
O5—H5B···O4ii0.861.842.6989 (13)177
C7—H7A···O2ii0.952.573.1144 (14)117
C8—H8A···O2ii0.952.453.0433 (13)121
C9—H9A···O5iii0.952.553.2168 (13)127
Symmetry codes: (i) x, y, z1/2; (ii) x+3/2, y+1/2, z; (iii) x, y+1, z.
 

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEgli, M. & Sarkhel, S. (2007). Acc. Chem. Res. 40, 197–205.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTombul, M., Güven, K. & Büyükgüngör, O. (2007). Acta Cryst. E63, m1783–m1784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTombul, M., Güven, K. & Svoboda, I. (2008). Acta Cryst. E64, m246–m247.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds