organic compounds
1-(4-Acetylphenyl)-3-butyrylthiourea
aDepartment of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: sohail262001@yahoo.com
The title compound, C13H16N2O2S, crystallizes in the thioamide form with an intramolecular hydrogen bond of type N—H⋯Obutyryl. Molecules are linked into chains parallel to [10] by a further hydrogen bond of type N—H⋯Oacetyl. C—H⋯O and C—H⋯S hydrogen bonds are also present.
Related literature
For related literature, see: D'hooghe et al. (2005); Glasser & Doughty (1964); Huebner et al. (1953); Jain & Rao (2003); Morales et al. (2000); Ru et al. (1994); Xu et al. (2004); Xue et al. (2003); Zeng et al. (2003); Zheng et al. (2004); Douglas & Dains (1934).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808022095/pk2104sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808022095/pk2104Isup2.hkl
The title compound was synthesized by a slight modification of the published procedure (Douglas & Dains, 1934). A solution of butanoyl chloride (0.1 mol) in dry acetone (75 ml) was added dropwise to a suspension of ammonium thiocyanate (0.1 mol) in dry acetone (55 ml) and the reaction mixture was refluxed for 45 minutes. After cooling to room temperature, a solution of 4-aminoacetophenone (0.1 mol) in dry acetone (25 ml) was added and the resulting mixture refluxed for 1.5 hrs. The reaction mixture was poured into five times its volume of cold water whereupon the thiourea precipitated as a solid. The product was recrystallized from ethyl acetate as colourless crystals (2.85 g, 79%). m.p.458 K.
H atoms of NH groups were refined freely. Methyl H atoms were included on the basis of idealized rigid groups (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip. Other hydrogen atoms were included using a riding model with C—H 0.95 (aromatic) or 0.99 (methylene) Å. U(H) values were fixed at 1.5Uiso(C) of the parent C atom for methyl H, 1.2Uiso(C) for other H.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C13H16N2O2S | Z = 2 |
Mr = 264.34 | F(000) = 280 |
Triclinic, P1 | Dx = 1.355 Mg m−3 |
Hall symbol: -P 1 | Melting point: 458 K |
a = 7.5111 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.7585 (8) Å | Cell parameters from 13985 reflections |
c = 10.5036 (5) Å | θ = 2.6–30.6° |
α = 65.283 (5)° | µ = 0.25 mm−1 |
β = 76.245 (4)° | T = 100 K |
γ = 68.589 (5)° | Tablet, pale yellow |
V = 647.78 (8) Å3 | 0.35 × 0.20 × 0.10 mm |
Oxford Diffraction Xcalibur S diffractometer | 3613 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3036 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 16 pixels mm-1 | θmax = 30.7°, θmin = 2.6° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −13→13 |
Tmin = 0.940, Tmax = 0.976 | l = −15→15 |
22401 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.087 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0536P)2 + 0.0789P] where P = (Fo2 + 2Fc2)/3 |
3613 reflections | (Δ/σ)max = 0.003 |
173 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C13H16N2O2S | γ = 68.589 (5)° |
Mr = 264.34 | V = 647.78 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.5111 (5) Å | Mo Kα radiation |
b = 9.7585 (8) Å | µ = 0.25 mm−1 |
c = 10.5036 (5) Å | T = 100 K |
α = 65.283 (5)° | 0.35 × 0.20 × 0.10 mm |
β = 76.245 (4)° |
Oxford Diffraction Xcalibur S diffractometer | 3613 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 3036 reflections with I > 2σ(I) |
Tmin = 0.940, Tmax = 0.976 | Rint = 0.030 |
22401 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.087 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.45 e Å−3 |
3613 reflections | Δρmin = −0.22 e Å−3 |
173 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S | 0.29224 (4) | 0.76793 (3) | 0.30824 (3) | 0.01606 (9) | |
O1 | 0.44460 (12) | 0.23350 (9) | 0.43763 (8) | 0.01882 (17) | |
O2 | 1.01149 (11) | 0.57384 (9) | −0.32905 (8) | 0.01832 (17) | |
N1 | 0.30196 (13) | 0.47376 (10) | 0.46308 (9) | 0.01281 (18) | |
H01 | 0.223 (2) | 0.5166 (17) | 0.5163 (15) | 0.020 (3)* | |
N2 | 0.50761 (13) | 0.49957 (11) | 0.26018 (9) | 0.01395 (18) | |
H02 | 0.522 (2) | 0.4018 (19) | 0.2950 (17) | 0.032 (4)* | |
C1 | 0.19337 (17) | 0.00779 (13) | 0.85964 (12) | 0.0201 (2) | |
H1A | 0.2003 | 0.0630 | 0.9169 | 0.030* | |
H1B | 0.2504 | −0.1064 | 0.9066 | 0.030* | |
H1C | 0.0587 | 0.0302 | 0.8482 | 0.030* | |
C2 | 0.30349 (17) | 0.06471 (12) | 0.71538 (12) | 0.0192 (2) | |
H2A | 0.4416 | 0.0343 | 0.7261 | 0.023* | |
H2B | 0.2907 | 0.0134 | 0.6556 | 0.023* | |
C3 | 0.22642 (15) | 0.24316 (12) | 0.64468 (11) | 0.0149 (2) | |
H3A | 0.0909 | 0.2712 | 0.6285 | 0.018* | |
H3B | 0.2281 | 0.2925 | 0.7096 | 0.018* | |
C4 | 0.33675 (14) | 0.31196 (12) | 0.50663 (11) | 0.0134 (2) | |
C5 | 0.37498 (14) | 0.57496 (12) | 0.33954 (10) | 0.01180 (19) | |
C6 | 0.60770 (14) | 0.55630 (12) | 0.12737 (10) | 0.01210 (19) | |
C7 | 0.70848 (15) | 0.44211 (12) | 0.06708 (11) | 0.0145 (2) | |
H7 | 0.7064 | 0.3359 | 0.1171 | 0.017* | |
C8 | 0.81080 (15) | 0.48184 (12) | −0.06408 (11) | 0.0145 (2) | |
H8 | 0.8775 | 0.4033 | −0.1039 | 0.017* | |
C9 | 0.81661 (14) | 0.63750 (12) | −0.13858 (11) | 0.0126 (2) | |
C10 | 0.71839 (15) | 0.74982 (12) | −0.07705 (11) | 0.0148 (2) | |
H10 | 0.7227 | 0.8555 | −0.1264 | 0.018* | |
C11 | 0.61396 (15) | 0.71148 (12) | 0.05482 (11) | 0.0148 (2) | |
H11 | 0.5478 | 0.7900 | 0.0949 | 0.018* | |
C12 | 0.92871 (14) | 0.67675 (12) | −0.27915 (11) | 0.0143 (2) | |
C13 | 0.93843 (19) | 0.84247 (14) | −0.35931 (12) | 0.0241 (3) | |
H13A | 1.0270 | 0.8463 | −0.4451 | 0.036* | |
H13B | 0.9845 | 0.8759 | −0.3005 | 0.036* | |
H13C | 0.8102 | 0.9136 | −0.3848 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S | 0.01598 (13) | 0.01249 (13) | 0.01624 (14) | −0.00382 (9) | 0.00445 (9) | −0.00563 (10) |
O1 | 0.0236 (4) | 0.0161 (4) | 0.0159 (4) | −0.0068 (3) | 0.0050 (3) | −0.0081 (3) |
O2 | 0.0209 (4) | 0.0178 (4) | 0.0143 (4) | −0.0047 (3) | 0.0052 (3) | −0.0086 (3) |
N1 | 0.0140 (4) | 0.0132 (4) | 0.0103 (4) | −0.0044 (3) | 0.0036 (3) | −0.0058 (3) |
N2 | 0.0168 (4) | 0.0127 (4) | 0.0110 (4) | −0.0054 (3) | 0.0035 (3) | −0.0050 (3) |
C1 | 0.0255 (5) | 0.0160 (5) | 0.0161 (5) | −0.0089 (4) | 0.0005 (4) | −0.0023 (4) |
C2 | 0.0232 (5) | 0.0127 (5) | 0.0181 (5) | −0.0055 (4) | 0.0031 (4) | −0.0050 (4) |
C3 | 0.0153 (5) | 0.0142 (5) | 0.0127 (5) | −0.0054 (4) | 0.0024 (4) | −0.0037 (4) |
C4 | 0.0137 (4) | 0.0148 (5) | 0.0120 (5) | −0.0052 (4) | −0.0007 (4) | −0.0048 (4) |
C5 | 0.0112 (4) | 0.0149 (5) | 0.0100 (5) | −0.0049 (3) | −0.0002 (3) | −0.0048 (4) |
C6 | 0.0117 (4) | 0.0153 (5) | 0.0095 (4) | −0.0050 (4) | 0.0010 (3) | −0.0051 (4) |
C7 | 0.0163 (5) | 0.0132 (5) | 0.0138 (5) | −0.0052 (4) | 0.0017 (4) | −0.0059 (4) |
C8 | 0.0148 (4) | 0.0148 (5) | 0.0139 (5) | −0.0041 (4) | 0.0013 (4) | −0.0072 (4) |
C9 | 0.0124 (4) | 0.0155 (5) | 0.0099 (5) | −0.0043 (4) | 0.0001 (4) | −0.0051 (4) |
C10 | 0.0171 (5) | 0.0139 (5) | 0.0126 (5) | −0.0054 (4) | 0.0017 (4) | −0.0052 (4) |
C11 | 0.0172 (5) | 0.0141 (5) | 0.0131 (5) | −0.0044 (4) | 0.0024 (4) | −0.0073 (4) |
C12 | 0.0143 (4) | 0.0165 (5) | 0.0112 (5) | −0.0048 (4) | 0.0008 (4) | −0.0054 (4) |
C13 | 0.0345 (6) | 0.0192 (5) | 0.0167 (5) | −0.0126 (5) | 0.0104 (5) | −0.0077 (4) |
S—C5 | 1.6629 (11) | C12—C13 | 1.4993 (15) |
O1—C4 | 1.2246 (13) | N1—H01 | 0.835 (16) |
O2—C12 | 1.2243 (13) | N2—H02 | 0.840 (16) |
N1—C4 | 1.3864 (13) | C1—H1A | 0.9800 |
N1—C5 | 1.3948 (12) | C1—H1B | 0.9800 |
N2—C5 | 1.3458 (13) | C1—H1C | 0.9800 |
N2—C6 | 1.4061 (12) | C2—H2A | 0.9900 |
C1—C2 | 1.5245 (15) | C2—H2B | 0.9900 |
C2—C3 | 1.5185 (14) | C3—H3A | 0.9900 |
C3—C4 | 1.5036 (14) | C3—H3B | 0.9900 |
C6—C11 | 1.3949 (14) | C7—H7 | 0.9500 |
C6—C7 | 1.4008 (14) | C8—H8 | 0.9500 |
C7—C8 | 1.3807 (14) | C10—H10 | 0.9500 |
C8—C9 | 1.3999 (14) | C11—H11 | 0.9500 |
C9—C10 | 1.3923 (14) | C13—H13A | 0.9800 |
C9—C12 | 1.4856 (14) | C13—H13B | 0.9800 |
C10—C11 | 1.3921 (14) | C13—H13C | 0.9800 |
C4—N1—C5 | 128.62 (9) | H1A—C1—H1B | 109.5 |
C5—N2—C6 | 131.77 (9) | C2—C1—H1C | 109.5 |
C3—C2—C1 | 110.45 (9) | H1A—C1—H1C | 109.5 |
C4—C3—C2 | 114.32 (8) | H1B—C1—H1C | 109.5 |
O1—C4—N1 | 122.98 (9) | C3—C2—H2A | 109.6 |
O1—C4—C3 | 123.40 (9) | C1—C2—H2A | 109.6 |
N1—C4—C3 | 113.60 (9) | C3—C2—H2B | 109.6 |
N2—C5—N1 | 113.62 (9) | C1—C2—H2B | 109.6 |
N2—C5—S | 128.35 (8) | H2A—C2—H2B | 108.1 |
N1—C5—S | 118.03 (7) | C4—C3—H3A | 108.7 |
C11—C6—C7 | 119.43 (9) | C2—C3—H3A | 108.7 |
C11—C6—N2 | 125.91 (9) | C4—C3—H3B | 108.7 |
C7—C6—N2 | 114.66 (9) | C2—C3—H3B | 108.7 |
C8—C7—C6 | 120.86 (9) | H3A—C3—H3B | 107.6 |
C7—C8—C9 | 120.25 (10) | C8—C7—H7 | 119.6 |
C10—C9—C8 | 118.54 (9) | C6—C7—H7 | 119.6 |
C10—C9—C12 | 122.35 (9) | C7—C8—H8 | 119.9 |
C8—C9—C12 | 119.11 (9) | C9—C8—H8 | 119.9 |
C11—C10—C9 | 121.78 (9) | C11—C10—H10 | 119.1 |
C10—C11—C6 | 119.12 (9) | C9—C10—H10 | 119.1 |
O2—C12—C9 | 119.80 (9) | C10—C11—H11 | 120.4 |
O2—C12—C13 | 120.49 (9) | C6—C11—H11 | 120.4 |
C9—C12—C13 | 119.71 (9) | C12—C13—H13A | 109.5 |
C4—N1—H01 | 115.4 (10) | C12—C13—H13B | 109.5 |
C5—N1—H01 | 115.9 (10) | H13A—C13—H13B | 109.5 |
C5—N2—H02 | 111.5 (11) | C12—C13—H13C | 109.5 |
C6—N2—H02 | 116.4 (11) | H13A—C13—H13C | 109.5 |
C2—C1—H1A | 109.5 | H13B—C13—H13C | 109.5 |
C2—C1—H1B | 109.5 | ||
C1—C2—C3—C4 | 175.26 (9) | C6—C7—C8—C9 | 0.55 (16) |
C5—N1—C4—O1 | 0.85 (17) | C7—C8—C9—C10 | 0.39 (15) |
C5—N1—C4—C3 | −177.92 (9) | C7—C8—C9—C12 | 179.66 (9) |
C2—C3—C4—O1 | 18.45 (15) | C8—C9—C10—C11 | −0.70 (16) |
C2—C3—C4—N1 | −162.79 (9) | C12—C9—C10—C11 | −179.95 (10) |
C6—N2—C5—N1 | 176.36 (10) | C9—C10—C11—C6 | 0.07 (16) |
C6—N2—C5—S | −3.91 (17) | C7—C6—C11—C10 | 0.87 (15) |
C4—N1—C5—N2 | −5.70 (15) | N2—C6—C11—C10 | −179.38 (10) |
C4—N1—C5—S | 174.53 (8) | C10—C9—C12—O2 | −179.50 (10) |
C5—N2—C6—C11 | 11.68 (18) | C8—C9—C12—O2 | 1.26 (15) |
C5—N2—C6—C7 | −168.56 (11) | C10—C9—C12—C13 | 0.06 (16) |
C11—C6—C7—C8 | −1.19 (16) | C8—C9—C12—C13 | −179.18 (10) |
N2—C6—C7—C8 | 179.03 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H02···O1 | 0.840 (16) | 1.874 (16) | 2.6211 (12) | 147.4 (16) |
N1—H01···O2i | 0.835 (16) | 2.087 (16) | 2.9057 (12) | 166.7 (13) |
C3—H3B···O2i | 0.99 | 2.54 | 3.1345 (13) | 118 |
C1—H1C···Sii | 0.98 | 3.01 | 3.8996 (13) | 151 |
C3—H3A···Sii | 0.99 | 2.92 | 3.8444 (11) | 155 |
Symmetry codes: (i) x−1, y, z+1; (ii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C13H16N2O2S |
Mr | 264.34 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.5111 (5), 9.7585 (8), 10.5036 (5) |
α, β, γ (°) | 65.283 (5), 76.245 (4), 68.589 (5) |
V (Å3) | 647.78 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.25 |
Crystal size (mm) | 0.35 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur S diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.940, 0.976 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22401, 3613, 3036 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.717 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.087, 1.06 |
No. of reflections | 3613 |
No. of parameters | 173 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.45, −0.22 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H02···O1 | 0.840 (16) | 1.874 (16) | 2.6211 (12) | 147.4 (16) |
N1—H01···O2i | 0.835 (16) | 2.087 (16) | 2.9057 (12) | 166.7 (13) |
C3—H3B···O2i | 0.99 | 2.54 | 3.1345 (13) | 118.1 |
C1—H1C···Sii | 0.98 | 3.01 | 3.8996 (13) | 150.8 |
C3—H3A···Sii | 0.99 | 2.92 | 3.8444 (11) | 155.1 |
Symmetry codes: (i) x−1, y, z+1; (ii) −x, −y+1, −z+1. |
Acknowledgements
The authors are grateful to Allama Iqbal Open University, Islamabad, Pakistan, for the allocation of research and analytical laboratory facilities.
References
D'hooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem. 70, 227–232. Web of Science PubMed CAS Google Scholar
Douglas, I. B. & Dains, F. B. (1934). J. Am. Chem. Soc. 56, 719–721. CrossRef Google Scholar
Glasser, A. C. & Doughty, R. M. (1964). J. Pharm. Sci. 53, 40–42. CrossRef PubMed CAS Web of Science Google Scholar
Huebner, O. F., Marsh, J. L., Mizzoni, R. H., Mull, R. P., Schro, D. C. & Troxell, H. A. (1953). J. Am. Chem. Soc. 75, 2274–2275. CrossRef CAS Web of Science Google Scholar
Jain, V. K. & Rao, J. T. (2003). J. Inst. Chem. 75, 24–26. CAS Google Scholar
Morales, A. D., Novoa de Armas, H., Blaton, N. M., Peeters, O. M., De Ranter, C. J., Márquez, H. & Pomés Hernández, R. (2000). Acta Cryst. C56, 503–504. CSD CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Ru, C., Wang, Y., Li, J., Ma, D., Gong, F., Liu, Y. & Lu, P. (1994). Yingyong Huaxue, 11, 82–85. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Xu, Y., Hua, W., Liu, X. & Zhu, D. (2004). Chin. J. Org. Chem. 24, 1217–1222. CAS Google Scholar
Xue, S., Duan, L., Ke, S. & Jia, L. (2003). Chem. Mag. 5, 67–70. Google Scholar
Zeng, R.-S., Zou, J.-P., Zhi, S.-J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657–1659. Web of Science CrossRef PubMed CAS Google Scholar
Zheng, W., Yates, S. R., Papiernik, S. K. & Guo, M. (2004). Environ. Sci. Technol. 38, 6855–6860. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiourea and its derivatives have found extensive applications in the fields of medicine, agriculture and analytical chemistry. Substituted thioureas are an important class of compounds, precursors or intermediates towards the synthesis of a variety of heterocyclic systems such as imidazole-2-thiones (Zeng et al., 2003), 2-imino-1, 3-thiazolines (D'hooghe et al., 2005) pyrimidines-2-thione (Jain & Rao, 2003) and (benzothiazolyl)-4-quinazolinones. N– (Substituted phenyl)-N-phenylthioureas and N– (substituted butanoyl)-N-phenylthioureas have been developed. Thioureas are also known to exhibit a wide range of biological activities including antiviral, antibacterial, antifungal, (Huebner et al., 1953) antitubercular, antithyroidal, herbicidal and insecticidal activities and as agrochemicals (Xu et al., 2004), e.g. 1-benzoyl-3-(4,5-disubstituted-pyrimidine-2-yl)- thioureas, which have excellent herbicidal activity (Zheng et al., 2004). Thioureas are also well known chelating agents for transition metals (Xue et al., 2003). N,N-Dialkyl-N'-benzoyl thioureas act as selective complexing agents for the enrichment of platinum metals even from strongly interfacing matrixes (Ru et al., 1994). The complexes of thiourea derivatives also show various biological activities (Glasser & Doughty, 1964). Thioureas and substituted thioureas are also known as epoxy resin curing agents.
The title compound is a precursor for an attempt to synthesize imidazole derivatives and transition metal complexes as epoxy resin curing agents and accelerators. It crystallizes in the thioamide form (Fig. 1). The molecule is essentially planar (r.m.s. deviation of all non-H atoms 0.118 (1) Å), as reflected by the torsion angles O1—C4—N1—C5, C4—N1—C5—S and C4—N1—C5—N2 of 0.85 (17)°, 174.53 (8)° and -5.70 (15)°, respectively. The C4—O1, C5—S and C12—O2 bonds show a typical double bond character with bond lengths of 1.2246 (13), 1.6629 (11) and 1.2243 (13) Å, respectively. All the C—N bonds, C4—N1 = 1.3864 (13), C6—N2 = 1.4061 (12), C5—N2 = 1.3458 (13) and C5—N1 = 1.3948 (12) Å display a partial double bond character. Among the latter three C—N bonds, C4—N1 is the longest indicating a C(sp2)—N(sp2) single bond, while C5—N2 is the shortest bond with more double bond character. This demonstrates that there is π conjugation along S—C5—N2 but not along O1—C4—N1 and C4—N1—C5 as found in 1-(3-methoxybenzoyl)-3, 3-diethylthiourea (Morales et al., 2000). There is a strong intramolecular hydrogen bond N2—H02···O1, with H2···O1 = 1.874 (16) Å, forming a 6-membered ring.
Molecules are connected in chains parallel to [101] by classical hydrogen bonds N1—H1···O2 and a weak bifurcated component C3—H3B···O2; the chains are further connected in an antiparallel sense by a bifurcated system of two C—H···S contacts (Table 2, Fig. 2).