organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Acetyl­phen­yl)-3-butyrylthio­urea

aDepartment of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
*Correspondence e-mail: sohail262001@yahoo.com

(Received 29 May 2008; accepted 15 July 2008; online 23 July 2008)

The title compound, C13H16N2O2S, crystallizes in the thio­amide form with an intra­molecular hydrogen bond of type N—H⋯Obutyr­yl. Mol­ecules are linked into chains parallel to [10[\overline{1}]] by a further hydrogen bond of type N—H⋯Oacet­yl. C—H⋯O and C—H⋯S hydrogen bonds are also present.

Related literature

For related literature, see: D'hooghe et al. (2005[D'hooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem. 70, 227-232.]); Glasser & Doughty (1964[Glasser, A. C. & Doughty, R. M. (1964). J. Pharm. Sci. 53, 40-42.]); Huebner et al. (1953[Huebner, O. F., Marsh, J. L., Mizzoni, R. H., Mull, R. P., Schro, D. C. & Troxell, H. A. (1953). J. Am. Chem. Soc. 75, 2274-2275.]); Jain & Rao (2003[Jain, V. K. & Rao, J. T. (2003). J. Inst. Chem. 75, 24-26.]); Morales et al. (2000[Morales, A. D., Novoa de Armas, H., Blaton, N. M., Peeters, O. M., De Ranter, C. J., Márquez, H. & Pomés Hernández, R. (2000). Acta Cryst. C56, 503-504.]); Ru et al. (1994[Ru, C., Wang, Y., Li, J., Ma, D., Gong, F., Liu, Y. & Lu, P. (1994). Yingyong Huaxue, 11, 82-85.]); Xu et al. (2004[Xu, Y., Hua, W., Liu, X. & Zhu, D. (2004). Chin. J. Org. Chem. 24, 1217-1222.]); Xue et al. (2003[Xue, S., Duan, L., Ke, S. & Jia, L. (2003). Chem. Mag. 5, 67-70.]); Zeng et al. (2003[Zeng, R.-S., Zou, J.-P., Zhi, S.-J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657-1659.]); Zheng et al. (2004[Zheng, W., Yates, S. R., Papiernik, S. K. & Guo, M. (2004). Environ. Sci. Technol. 38, 6855-6860.]); Douglas & Dains (1934[Douglas, I. B. & Dains, F. B. (1934). J. Am. Chem. Soc. 56, 719-721.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16N2O2S

  • Mr = 264.34

  • Triclinic, [P \overline 1]

  • a = 7.5111 (5) Å

  • b = 9.7585 (8) Å

  • c = 10.5036 (5) Å

  • α = 65.283 (5)°

  • β = 76.245 (4)°

  • γ = 68.589 (5)°

  • V = 647.78 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 (2) K

  • 0.35 × 0.20 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur S diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.940, Tmax = 0.976

  • 22401 measured reflections

  • 3613 independent reflections

  • 3036 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.087

  • S = 1.06

  • 3613 reflections

  • 173 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H02⋯O1 0.840 (16) 1.874 (16) 2.6211 (12) 147.4 (16)
N1—H01⋯O2i 0.835 (16) 2.087 (16) 2.9057 (12) 166.7 (13)
C3—H3B⋯O2i 0.99 2.54 3.1345 (13) 118
C1—H1C⋯Sii 0.98 3.01 3.8996 (13) 151
C3—H3A⋯Sii 0.99 2.92 3.8444 (11) 155
Symmetry codes: (i) x-1, y, z+1; (ii) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiourea and its derivatives have found extensive applications in the fields of medicine, agriculture and analytical chemistry. Substituted thioureas are an important class of compounds, precursors or intermediates towards the synthesis of a variety of heterocyclic systems such as imidazole-2-thiones (Zeng et al., 2003), 2-imino-1, 3-thiazolines (D'hooghe et al., 2005) pyrimidines-2-thione (Jain & Rao, 2003) and (benzothiazolyl)-4-quinazolinones. N– (Substituted phenyl)-N-phenylthioureas and N– (substituted butanoyl)-N-phenylthioureas have been developed. Thioureas are also known to exhibit a wide range of biological activities including antiviral, antibacterial, antifungal, (Huebner et al., 1953) antitubercular, antithyroidal, herbicidal and insecticidal activities and as agrochemicals (Xu et al., 2004), e.g. 1-benzoyl-3-(4,5-disubstituted-pyrimidine-2-yl)- thioureas, which have excellent herbicidal activity (Zheng et al., 2004). Thioureas are also well known chelating agents for transition metals (Xue et al., 2003). N,N-Dialkyl-N'-benzoyl thioureas act as selective complexing agents for the enrichment of platinum metals even from strongly interfacing matrixes (Ru et al., 1994). The complexes of thiourea derivatives also show various biological activities (Glasser & Doughty, 1964). Thioureas and substituted thioureas are also known as epoxy resin curing agents.

The title compound is a precursor for an attempt to synthesize imidazole derivatives and transition metal complexes as epoxy resin curing agents and accelerators. It crystallizes in the thioamide form (Fig. 1). The molecule is essentially planar (r.m.s. deviation of all non-H atoms 0.118 (1) Å), as reflected by the torsion angles O1—C4—N1—C5, C4—N1—C5—S and C4—N1—C5—N2 of 0.85 (17)°, 174.53 (8)° and -5.70 (15)°, respectively. The C4—O1, C5—S and C12—O2 bonds show a typical double bond character with bond lengths of 1.2246 (13), 1.6629 (11) and 1.2243 (13) Å, respectively. All the C—N bonds, C4—N1 = 1.3864 (13), C6—N2 = 1.4061 (12), C5—N2 = 1.3458 (13) and C5—N1 = 1.3948 (12) Å display a partial double bond character. Among the latter three C—N bonds, C4—N1 is the longest indicating a C(sp2)—N(sp2) single bond, while C5—N2 is the shortest bond with more double bond character. This demonstrates that there is π conjugation along S—C5—N2 but not along O1—C4—N1 and C4—N1—C5 as found in 1-(3-methoxybenzoyl)-3, 3-diethylthiourea (Morales et al., 2000). There is a strong intramolecular hydrogen bond N2—H02···O1, with H2···O1 = 1.874 (16) Å, forming a 6-membered ring.

Molecules are connected in chains parallel to [101] by classical hydrogen bonds N1—H1···O2 and a weak bifurcated component C3—H3B···O2; the chains are further connected in an antiparallel sense by a bifurcated system of two C—H···S contacts (Table 2, Fig. 2).

Related literature top

For related literature, see: D'hooghe et al. (2005); Glasser & Doughty (1964); Huebner et al. (1953); Jain & Rao (2003); Morales et al. (2000); Ru et al. (1994); Xu et al. (2004); Xue et al. (2003); Zeng et al. (2003); Zheng et al. (2004); Douglas & Dains, 1934.

Experimental top

The title compound was synthesized by a slight modification of the published procedure (Douglas & Dains, 1934). A solution of butanoyl chloride (0.1 mol) in dry acetone (75 ml) was added dropwise to a suspension of ammonium thiocyanate (0.1 mol) in dry acetone (55 ml) and the reaction mixture was refluxed for 45 minutes. After cooling to room temperature, a solution of 4-aminoacetophenone (0.1 mol) in dry acetone (25 ml) was added and the resulting mixture refluxed for 1.5 hrs. The reaction mixture was poured into five times its volume of cold water whereupon the thiourea precipitated as a solid. The product was recrystallized from ethyl acetate as colourless crystals (2.85 g, 79%). m.p.458 K.

Refinement top

H atoms of NH groups were refined freely. Methyl H atoms were included on the basis of idealized rigid groups (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip. Other hydrogen atoms were included using a riding model with C—H 0.95 (aromatic) or 0.99 (methylene) Å. U(H) values were fixed at 1.5Uiso(C) of the parent C atom for methyl H, 1.2Uiso(C) for other H.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound in the crystal. Ellipsoids represent 50% probability levels.
[Figure 2] Fig. 2. Packing diagram of the title compound showing classical and "weak" H bonds as thick and thin dashed bonds respectively. H atoms not involved in H bonds are omitted for clarity.
1-(4-Acetylphenyl)-3-butyrylthiourea top
Crystal data top
C13H16N2O2SZ = 2
Mr = 264.34F(000) = 280
Triclinic, P1Dx = 1.355 Mg m3
Hall symbol: -P 1Melting point: 458 K
a = 7.5111 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7585 (8) ÅCell parameters from 13985 reflections
c = 10.5036 (5) Åθ = 2.6–30.6°
α = 65.283 (5)°µ = 0.25 mm1
β = 76.245 (4)°T = 100 K
γ = 68.589 (5)°Tablet, pale yellow
V = 647.78 (8) Å30.35 × 0.20 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
3613 independent reflections
Radiation source: Enhance (Mo) X-ray Source3036 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16 pixels mm-1θmax = 30.7°, θmin = 2.6°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1313
Tmin = 0.940, Tmax = 0.976l = 1515
22401 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.0789P]
where P = (Fo2 + 2Fc2)/3
3613 reflections(Δ/σ)max = 0.003
173 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C13H16N2O2Sγ = 68.589 (5)°
Mr = 264.34V = 647.78 (8) Å3
Triclinic, P1Z = 2
a = 7.5111 (5) ÅMo Kα radiation
b = 9.7585 (8) ŵ = 0.25 mm1
c = 10.5036 (5) ÅT = 100 K
α = 65.283 (5)°0.35 × 0.20 × 0.10 mm
β = 76.245 (4)°
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
3613 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
3036 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.976Rint = 0.030
22401 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.45 e Å3
3613 reflectionsΔρmin = 0.22 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.29224 (4)0.76793 (3)0.30824 (3)0.01606 (9)
O10.44460 (12)0.23350 (9)0.43763 (8)0.01882 (17)
O21.01149 (11)0.57384 (9)0.32905 (8)0.01832 (17)
N10.30196 (13)0.47376 (10)0.46308 (9)0.01281 (18)
H010.223 (2)0.5166 (17)0.5163 (15)0.020 (3)*
N20.50761 (13)0.49957 (11)0.26018 (9)0.01395 (18)
H020.522 (2)0.4018 (19)0.2950 (17)0.032 (4)*
C10.19337 (17)0.00779 (13)0.85964 (12)0.0201 (2)
H1A0.20030.06300.91690.030*
H1B0.25040.10640.90660.030*
H1C0.05870.03020.84820.030*
C20.30349 (17)0.06471 (12)0.71538 (12)0.0192 (2)
H2A0.44160.03430.72610.023*
H2B0.29070.01340.65560.023*
C30.22642 (15)0.24316 (12)0.64468 (11)0.0149 (2)
H3A0.09090.27120.62850.018*
H3B0.22810.29250.70960.018*
C40.33675 (14)0.31196 (12)0.50663 (11)0.0134 (2)
C50.37498 (14)0.57496 (12)0.33954 (10)0.01180 (19)
C60.60770 (14)0.55630 (12)0.12737 (10)0.01210 (19)
C70.70848 (15)0.44211 (12)0.06708 (11)0.0145 (2)
H70.70640.33590.11710.017*
C80.81080 (15)0.48184 (12)0.06408 (11)0.0145 (2)
H80.87750.40330.10390.017*
C90.81661 (14)0.63750 (12)0.13858 (11)0.0126 (2)
C100.71839 (15)0.74982 (12)0.07705 (11)0.0148 (2)
H100.72270.85550.12640.018*
C110.61396 (15)0.71148 (12)0.05482 (11)0.0148 (2)
H110.54780.79000.09490.018*
C120.92871 (14)0.67675 (12)0.27915 (11)0.0143 (2)
C130.93843 (19)0.84247 (14)0.35931 (12)0.0241 (3)
H13A1.02700.84630.44510.036*
H13B0.98450.87590.30050.036*
H13C0.81020.91360.38480.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.01598 (13)0.01249 (13)0.01624 (14)0.00382 (9)0.00445 (9)0.00563 (10)
O10.0236 (4)0.0161 (4)0.0159 (4)0.0068 (3)0.0050 (3)0.0081 (3)
O20.0209 (4)0.0178 (4)0.0143 (4)0.0047 (3)0.0052 (3)0.0086 (3)
N10.0140 (4)0.0132 (4)0.0103 (4)0.0044 (3)0.0036 (3)0.0058 (3)
N20.0168 (4)0.0127 (4)0.0110 (4)0.0054 (3)0.0035 (3)0.0050 (3)
C10.0255 (5)0.0160 (5)0.0161 (5)0.0089 (4)0.0005 (4)0.0023 (4)
C20.0232 (5)0.0127 (5)0.0181 (5)0.0055 (4)0.0031 (4)0.0050 (4)
C30.0153 (5)0.0142 (5)0.0127 (5)0.0054 (4)0.0024 (4)0.0037 (4)
C40.0137 (4)0.0148 (5)0.0120 (5)0.0052 (4)0.0007 (4)0.0048 (4)
C50.0112 (4)0.0149 (5)0.0100 (5)0.0049 (3)0.0002 (3)0.0048 (4)
C60.0117 (4)0.0153 (5)0.0095 (4)0.0050 (4)0.0010 (3)0.0051 (4)
C70.0163 (5)0.0132 (5)0.0138 (5)0.0052 (4)0.0017 (4)0.0059 (4)
C80.0148 (4)0.0148 (5)0.0139 (5)0.0041 (4)0.0013 (4)0.0072 (4)
C90.0124 (4)0.0155 (5)0.0099 (5)0.0043 (4)0.0001 (4)0.0051 (4)
C100.0171 (5)0.0139 (5)0.0126 (5)0.0054 (4)0.0017 (4)0.0052 (4)
C110.0172 (5)0.0141 (5)0.0131 (5)0.0044 (4)0.0024 (4)0.0073 (4)
C120.0143 (4)0.0165 (5)0.0112 (5)0.0048 (4)0.0008 (4)0.0054 (4)
C130.0345 (6)0.0192 (5)0.0167 (5)0.0126 (5)0.0104 (5)0.0077 (4)
Geometric parameters (Å, º) top
S—C51.6629 (11)C12—C131.4993 (15)
O1—C41.2246 (13)N1—H010.835 (16)
O2—C121.2243 (13)N2—H020.840 (16)
N1—C41.3864 (13)C1—H1A0.9800
N1—C51.3948 (12)C1—H1B0.9800
N2—C51.3458 (13)C1—H1C0.9800
N2—C61.4061 (12)C2—H2A0.9900
C1—C21.5245 (15)C2—H2B0.9900
C2—C31.5185 (14)C3—H3A0.9900
C3—C41.5036 (14)C3—H3B0.9900
C6—C111.3949 (14)C7—H70.9500
C6—C71.4008 (14)C8—H80.9500
C7—C81.3807 (14)C10—H100.9500
C8—C91.3999 (14)C11—H110.9500
C9—C101.3923 (14)C13—H13A0.9800
C9—C121.4856 (14)C13—H13B0.9800
C10—C111.3921 (14)C13—H13C0.9800
C4—N1—C5128.62 (9)H1A—C1—H1B109.5
C5—N2—C6131.77 (9)C2—C1—H1C109.5
C3—C2—C1110.45 (9)H1A—C1—H1C109.5
C4—C3—C2114.32 (8)H1B—C1—H1C109.5
O1—C4—N1122.98 (9)C3—C2—H2A109.6
O1—C4—C3123.40 (9)C1—C2—H2A109.6
N1—C4—C3113.60 (9)C3—C2—H2B109.6
N2—C5—N1113.62 (9)C1—C2—H2B109.6
N2—C5—S128.35 (8)H2A—C2—H2B108.1
N1—C5—S118.03 (7)C4—C3—H3A108.7
C11—C6—C7119.43 (9)C2—C3—H3A108.7
C11—C6—N2125.91 (9)C4—C3—H3B108.7
C7—C6—N2114.66 (9)C2—C3—H3B108.7
C8—C7—C6120.86 (9)H3A—C3—H3B107.6
C7—C8—C9120.25 (10)C8—C7—H7119.6
C10—C9—C8118.54 (9)C6—C7—H7119.6
C10—C9—C12122.35 (9)C7—C8—H8119.9
C8—C9—C12119.11 (9)C9—C8—H8119.9
C11—C10—C9121.78 (9)C11—C10—H10119.1
C10—C11—C6119.12 (9)C9—C10—H10119.1
O2—C12—C9119.80 (9)C10—C11—H11120.4
O2—C12—C13120.49 (9)C6—C11—H11120.4
C9—C12—C13119.71 (9)C12—C13—H13A109.5
C4—N1—H01115.4 (10)C12—C13—H13B109.5
C5—N1—H01115.9 (10)H13A—C13—H13B109.5
C5—N2—H02111.5 (11)C12—C13—H13C109.5
C6—N2—H02116.4 (11)H13A—C13—H13C109.5
C2—C1—H1A109.5H13B—C13—H13C109.5
C2—C1—H1B109.5
C1—C2—C3—C4175.26 (9)C6—C7—C8—C90.55 (16)
C5—N1—C4—O10.85 (17)C7—C8—C9—C100.39 (15)
C5—N1—C4—C3177.92 (9)C7—C8—C9—C12179.66 (9)
C2—C3—C4—O118.45 (15)C8—C9—C10—C110.70 (16)
C2—C3—C4—N1162.79 (9)C12—C9—C10—C11179.95 (10)
C6—N2—C5—N1176.36 (10)C9—C10—C11—C60.07 (16)
C6—N2—C5—S3.91 (17)C7—C6—C11—C100.87 (15)
C4—N1—C5—N25.70 (15)N2—C6—C11—C10179.38 (10)
C4—N1—C5—S174.53 (8)C10—C9—C12—O2179.50 (10)
C5—N2—C6—C1111.68 (18)C8—C9—C12—O21.26 (15)
C5—N2—C6—C7168.56 (11)C10—C9—C12—C130.06 (16)
C11—C6—C7—C81.19 (16)C8—C9—C12—C13179.18 (10)
N2—C6—C7—C8179.03 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H02···O10.840 (16)1.874 (16)2.6211 (12)147.4 (16)
N1—H01···O2i0.835 (16)2.087 (16)2.9057 (12)166.7 (13)
C3—H3B···O2i0.992.543.1345 (13)118
C1—H1C···Sii0.983.013.8996 (13)151
C3—H3A···Sii0.992.923.8444 (11)155
Symmetry codes: (i) x1, y, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H16N2O2S
Mr264.34
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.5111 (5), 9.7585 (8), 10.5036 (5)
α, β, γ (°)65.283 (5), 76.245 (4), 68.589 (5)
V3)647.78 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.35 × 0.20 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur S
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.940, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
22401, 3613, 3036
Rint0.030
(sin θ/λ)max1)0.717
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.087, 1.06
No. of reflections3613
No. of parameters173
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.22

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H02···O10.840 (16)1.874 (16)2.6211 (12)147.4 (16)
N1—H01···O2i0.835 (16)2.087 (16)2.9057 (12)166.7 (13)
C3—H3B···O2i0.992.543.1345 (13)118.1
C1—H1C···Sii0.983.013.8996 (13)150.8
C3—H3A···Sii0.992.923.8444 (11)155.1
Symmetry codes: (i) x1, y, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

The authors are grateful to Allama Iqbal Open University, Islamabad, Pakistan, for the allocation of research and analytical laboratory facilities.

References

First citationD'hooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem. 70, 227–232.  Web of Science PubMed CAS Google Scholar
First citationDouglas, I. B. & Dains, F. B. (1934). J. Am. Chem. Soc. 56, 719–721.  CrossRef Google Scholar
First citationGlasser, A. C. & Doughty, R. M. (1964). J. Pharm. Sci. 53, 40–42.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHuebner, O. F., Marsh, J. L., Mizzoni, R. H., Mull, R. P., Schro, D. C. & Troxell, H. A. (1953). J. Am. Chem. Soc. 75, 2274–2275.  CrossRef CAS Web of Science Google Scholar
First citationJain, V. K. & Rao, J. T. (2003). J. Inst. Chem. 75, 24–26.  CAS Google Scholar
First citationMorales, A. D., Novoa de Armas, H., Blaton, N. M., Peeters, O. M., De Ranter, C. J., Márquez, H. & Pomés Hernández, R. (2000). Acta Cryst. C56, 503–504.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationRu, C., Wang, Y., Li, J., Ma, D., Gong, F., Liu, Y. & Lu, P. (1994). Yingyong Huaxue, 11, 82–85.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationXu, Y., Hua, W., Liu, X. & Zhu, D. (2004). Chin. J. Org. Chem. 24, 1217–1222.  CAS Google Scholar
First citationXue, S., Duan, L., Ke, S. & Jia, L. (2003). Chem. Mag. 5, 67–70.  Google Scholar
First citationZeng, R.-S., Zou, J.-P., Zhi, S.-J., Chen, J. & Shen, Q. (2003). Org. Lett. 5, 1657–1659.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZheng, W., Yates, S. R., Papiernik, S. K. & Guo, M. (2004). Environ. Sci. Technol. 38, 6855–6860.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds