organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-2-[(2-Ammonio­phenyl)­sulfanyl­methyl]pyrrolidinium dibromide

aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and bDepartment of Pharmaceutical and Chemical Engineering, Taizhou College, Linhai, Zhejiang 317000, People's Republic of China
*Correspondence e-mail: bailinli1972@gmail.com

(Received 10 June 2008; accepted 8 July 2008; online 19 July 2008)

In the title compound, C11H18N2S2+·2Br, the pyrrolidine ring displays a half-chair conformation, with the flap C atom lying 0.522 (5) Å out of the plane of the other four atoms. The methyl­ene C atom, which connects the pyrrolidinium ring and the thio­ether group, is displaced from the plane of four pyrrolidinium atoms by 0.690 (6) Å in the same direction as the flap C atom. The plane of four pyrrolidinium atoms is almost perpendicular to the benzene ring [dihedral angle = 75.02 (4)°]. The crystal structure is stabilized by hydrogen bonds between the N and Br atoms.

Related literature

The synthesis of (S)-(+)-2-bromo­methyl­pyrrolidine hydro­bromide was described by Xu et al. (2006[Xu, D. Q., Luo, S. P., Yue, H. D., Wang, L. P., Liu, Y. K. & Xu, Z. Y. (2006). Synlett, 16, 2569-2572.]). The development of asymmetric organocatalysis was reviewed by Seayad & List (2005[Seayad, J. & List, B. (2005). Org. Biol. Chem. 3, 719-724.]).

[Scheme 1]

Experimental

Crystal data
  • C11H18N2S2+·2Br

  • Mr = 370.15

  • Orthorhombic, P 21 21 21

  • a = 7.9399 (9) Å

  • b = 10.8427 (13) Å

  • c = 17.658 (2) Å

  • V = 1520.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.45 mm−1

  • T = 293 (2) K

  • 0.49 × 0.42 × 0.36 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.103, Tmax = 0.137

  • 8969 measured reflections

  • 3311 independent reflections

  • 1808 reflections with I > 2σ(I)

  • Rint = 0.136

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.134

  • S = 0.83

  • 3311 reflections

  • 158 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.50 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1394 Friedel pairs

  • Flack parameter: 0.00 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2E⋯Br1i 0.83 (8) 2.39 (8) 3.201 (9) 169 (10)
N2—H2D⋯Br2ii 0.84 (6) 2.48 (4) 3.277 (9) 159 (8)
N2—H2C⋯Br1 0.84 (7) 2.47 (7) 3.298 (9) 173 (8)
N1—H1B⋯Br2 0.90 2.47 3.355 (7) 169
N1—H1A⋯Br2ii 0.90 2.33 3.224 (7) 170
Symmetry codes: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the field of asymmetric organocatalysis has developed rapidly, attracting an increasing number of research groups around the world (Seayad & List, 2005). The title compound, readily synthesized from commercially available L-proline and 2-aminobenzenethiol, could act as an organocatalyst in the Michael addition of ketones to nitrostyrenes. The reaction gave the desired Michael adducts in good yields and high enantioselectivities. The structure of (S)-2-((2-ammoniophenylthio)methyl)pyrrolidinium dibromide is shown in Fig. 1.

The crystal is built of doubly protonated cations and bromide anions. The pyrrolidine ring displays a half-chair conformation, with the flap C atom lying 0.522 (5) Å from the remaining four atoms of the pyrrolidine which are almost coplanar. The methylene C atom, which connects the pyrrolidinium ring and the thioether group, is displaced from the plane of four pyrrolidinium atoms by 0.690 (6) Å in the same direction, as the flap C atom. The plane of four pyrrolidinium ring atoms is almost perpendicular to the benzene ring [dihedral angle 75.02 (4) °]. The crystal structure is stabilized by hydrogen-bonds between the N and Br atoms. The molecular packing of the title compound showing H-bridge interactions between cationic-anionic groups is shown in Fig. 2.

Related literature top

The synthesis of (S)-(+)-2-bromomethylpyrrolidine hydrobromide is described by Xu et al. (2006). The development of asymmetric organocatalysis is reviewed by Seayad & List (2005).

Experimental top

The title compound was synthesized by treating 2-aminobenzenethiol (1.25 g,10 mmol) with (S)-2-bromomethylpyrrolidine hydrobromide (2.47 g,10 mmol) in MeCN (30 ml) under stirring at 353 K for 24 h (yield 87%). The compound (S)-2-bromomethylpyrrolidine hydrobromide was obtained from commercially available L-proline by reduction with NaBH4 and subsequent bromination with PBr3 (Xu et al., 2006). Suitable crystals of the title compound were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

All carbon-bonded H atoms were placed in calculated positions with C—H = 0.93 Å (Car), C—H = 0.98 Å (R3CH), C—H = 0.97 Å (R2CH2) and refined using a riding model, with Uiso(H)=1.2eq(C). NH3 hydrogen atoms were located in a difference map and refined with an N—H distance restraint of 0.83 (1) Å, with U value being 0.06, 0.06, 0.09 respectively, while NH2 hydrogens were treated using a riding model with N—H distance of 0.90 Å.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound showing H-bridge interactions between cationic-anionic groups.
(S)-2-[(2-Ammoniophenyl)sulfanylmethyl]pyrrolidinium dibromide top
Crystal data top
C11H18N2S2+·2BrF(000) = 736
Mr = 370.15Dx = 1.617 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1525 reflections
a = 7.9399 (9) Åθ = 4.4–38.3°
b = 10.8427 (13) ŵ = 5.45 mm1
c = 17.658 (2) ÅT = 293 K
V = 1520.2 (3) Å3Prismatic, colorless
Z = 40.49 × 0.42 × 0.37 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3311 independent reflections
Radiation source: fine-focus sealed tube1808 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.136
ϕ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.103, Tmax = 0.137k = 1312
8969 measured reflectionsl = 2218
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.049P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.134(Δ/σ)max < 0.001
S = 0.83Δρmax = 0.67 e Å3
3311 reflectionsΔρmin = 0.50 e Å3
158 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.0005 (1)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1394 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (2)
Crystal data top
C11H18N2S2+·2BrV = 1520.2 (3) Å3
Mr = 370.15Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.9399 (9) ŵ = 5.45 mm1
b = 10.8427 (13) ÅT = 293 K
c = 17.658 (2) Å0.49 × 0.42 × 0.37 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3311 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1808 reflections with I > 2σ(I)
Tmin = 0.103, Tmax = 0.137Rint = 0.136
8969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134Δρmax = 0.67 e Å3
S = 0.83Δρmin = 0.50 e Å3
3311 reflectionsAbsolute structure: Flack (1983), 1394 Friedel pairs
158 parametersAbsolute structure parameter: 0.00 (2)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.30470 (12)0.24305 (9)0.08797 (5)0.0559 (3)
Br20.38177 (12)0.34415 (8)0.06967 (5)0.0526 (3)
S10.0443 (3)0.1034 (2)0.14946 (13)0.0524 (6)
N10.0399 (9)0.3571 (6)0.0600 (4)0.0502 (18)
H1A0.06360.29390.02880.060*
H1B0.07280.36500.06300.060*
N20.1147 (12)0.0815 (8)0.0452 (5)0.0487 (18)
C10.1159 (18)0.4726 (9)0.0308 (7)0.083 (3)
H1C0.02960.52730.01110.100*
H1D0.19590.45490.00930.100*
C20.2025 (14)0.5297 (9)0.0973 (7)0.072 (3)
H2A0.32370.52250.09210.087*
H2B0.17350.61640.10130.087*
C30.1443 (14)0.4625 (9)0.1640 (6)0.068 (3)
H3A0.04200.49900.18400.081*
H3B0.22970.46270.20330.081*
C40.1120 (12)0.3339 (8)0.1362 (4)0.049 (2)
H40.21940.29010.13090.059*
C50.0079 (11)0.2577 (8)0.1852 (4)0.052 (2)
H5A0.11500.30040.18850.062*
H5B0.03810.25190.23590.062*
C60.1553 (11)0.0316 (8)0.1640 (5)0.047 (2)
C70.2504 (11)0.0537 (9)0.2270 (5)0.056 (3)
H70.21170.10920.26320.068*
C80.4032 (13)0.0049 (10)0.2382 (6)0.073 (3)
H80.46800.01380.28050.087*
C90.4579 (14)0.0887 (10)0.1879 (6)0.071 (3)
H90.56020.12850.19560.085*
C100.3611 (11)0.1161 (8)0.1239 (5)0.053 (2)
H100.39800.17500.08930.063*
C110.2112 (12)0.0555 (8)0.1123 (5)0.045 (2)
H2C0.157 (10)0.127 (6)0.012 (4)0.06 (3)*
H2D0.094 (12)0.032 (6)0.010 (3)0.06 (3)*
H2E0.043 (10)0.135 (7)0.054 (6)0.09 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0514 (6)0.0627 (5)0.0536 (6)0.0081 (5)0.0055 (4)0.0024 (5)
Br20.0526 (6)0.0614 (5)0.0438 (5)0.0072 (5)0.0041 (4)0.0022 (5)
S10.0412 (14)0.0682 (15)0.0479 (14)0.0052 (12)0.0015 (11)0.0049 (12)
N10.045 (4)0.060 (4)0.046 (4)0.007 (4)0.004 (3)0.001 (4)
N20.054 (5)0.048 (5)0.044 (5)0.003 (5)0.002 (5)0.002 (4)
C10.105 (10)0.061 (7)0.084 (8)0.010 (7)0.005 (8)0.006 (6)
C20.055 (7)0.055 (6)0.107 (10)0.005 (5)0.010 (7)0.017 (6)
C30.062 (8)0.074 (7)0.067 (7)0.006 (6)0.007 (6)0.021 (6)
C40.038 (5)0.066 (6)0.044 (5)0.015 (5)0.000 (4)0.003 (5)
C50.053 (6)0.070 (6)0.033 (4)0.019 (6)0.002 (4)0.009 (5)
C60.033 (6)0.062 (6)0.046 (5)0.008 (4)0.006 (4)0.010 (4)
C70.043 (6)0.077 (7)0.048 (6)0.012 (5)0.003 (5)0.000 (5)
C80.062 (8)0.102 (8)0.055 (7)0.010 (7)0.022 (6)0.008 (6)
C90.054 (7)0.103 (8)0.056 (7)0.028 (7)0.005 (6)0.001 (6)
C100.046 (6)0.061 (6)0.051 (5)0.022 (5)0.011 (5)0.010 (4)
C110.044 (6)0.059 (6)0.031 (5)0.000 (5)0.000 (4)0.007 (4)
Geometric parameters (Å, º) top
Br1—H2C2.47 (7)C3—C41.500 (12)
Br2—H1B2.4665C3—H3A0.9700
S1—C61.784 (8)C3—H3B0.9700
S1—C51.811 (9)C4—C51.529 (12)
N1—C11.483 (12)C4—H40.9800
N1—C41.484 (10)C5—H5A0.9700
N1—H1A0.9000C5—H5B0.9700
N1—H1B0.9000C6—C71.366 (11)
N2—C111.438 (11)C6—C111.388 (11)
N2—H2C0.84 (7)C7—C81.383 (13)
N2—H2D0.84 (6)C7—H70.9300
N2—H2E0.83 (8)C8—C91.343 (13)
C1—C21.495 (14)C8—H80.9300
C1—H1C0.9700C9—C101.399 (13)
C1—H1D0.9700C9—H90.9300
C2—C31.460 (13)C10—C111.374 (12)
C2—H2A0.9700C10—H100.9300
C2—H2B0.9700
C6—S1—C5102.2 (4)N1—C4—C3101.8 (7)
C1—N1—C4107.5 (8)N1—C4—C5111.3 (7)
C1—N1—H1A110.2C3—C4—C5115.1 (8)
C4—N1—H1A110.2N1—C4—H4109.4
C1—N1—H1B110.2C3—C4—H4109.4
C4—N1—H1B110.2C5—C4—H4109.4
H1A—N1—H1B108.5C4—C5—S1113.7 (6)
C11—N2—H2C118 (6)C4—C5—H5A108.8
C11—N2—H2D126 (6)S1—C5—H5A108.8
H2C—N2—H2D87 (7)C4—C5—H5B108.8
C11—N2—H2E111 (7)S1—C5—H5B108.8
H2C—N2—H2E90 (9)H5A—C5—H5B107.7
H2D—N2—H2E117 (10)C7—C6—C11118.6 (8)
N1—C1—C2105.3 (9)C7—C6—S1122.1 (7)
N1—C1—H1C110.7C11—C6—S1119.1 (7)
C2—C1—H1C110.7C6—C7—C8121.3 (9)
N1—C1—H1D110.7C6—C7—H7119.3
C2—C1—H1D110.7C8—C7—H7119.3
H1C—C1—H1D108.8C9—C8—C7120.0 (10)
C3—C2—C1106.3 (8)C9—C8—H8120.0
C3—C2—H2A110.5C7—C8—H8120.0
C1—C2—H2A110.5C8—C9—C10120.1 (9)
C3—C2—H2B110.5C8—C9—H9120.0
C1—C2—H2B110.5C10—C9—H9120.0
H2A—C2—H2B108.7C11—C10—C9119.6 (9)
C2—C3—C4104.7 (7)C11—C10—H10120.2
C2—C3—H3A110.8C9—C10—H10120.2
C4—C3—H3A110.8C10—C11—C6120.3 (8)
C2—C3—H3B110.8C10—C11—N2119.4 (8)
C4—C3—H3B110.8C6—C11—N2120.3 (8)
H3A—C3—H3B108.9
C4—N1—C1—C212.2 (11)C11—C6—C7—C82.8 (14)
N1—C1—C2—C312.1 (11)S1—C6—C7—C8178.6 (8)
C1—C2—C3—C431.4 (11)C6—C7—C8—C92.4 (15)
C1—N1—C4—C330.7 (10)C7—C8—C9—C100.5 (16)
C1—N1—C4—C5153.8 (8)C8—C9—C10—C111.0 (15)
C2—C3—C4—N138.0 (10)C9—C10—C11—C60.6 (13)
C2—C3—C4—C5158.6 (8)C9—C10—C11—N2178.2 (9)
N1—C4—C5—S164.5 (8)C7—C6—C11—C101.3 (12)
C3—C4—C5—S1179.7 (7)S1—C6—C11—C10177.2 (6)
C6—S1—C5—C469.0 (6)C7—C6—C11—N2180.0 (8)
C5—S1—C6—C738.7 (8)S1—C6—C11—N24.1 (11)
C5—S1—C6—C11145.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2E···Br1i0.83 (8)2.39 (8)3.201 (9)169 (10)
N2—H2D···Br2ii0.84 (6)2.48 (4)3.277 (9)159 (8)
N2—H2C···Br10.84 (7)2.47 (7)3.298 (9)173 (8)
N1—H1B···Br20.902.473.355 (7)169
N1—H1A···Br2ii0.902.333.224 (7)170
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC11H18N2S2+·2Br
Mr370.15
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)7.9399 (9), 10.8427 (13), 17.658 (2)
V3)1520.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.45
Crystal size (mm)0.49 × 0.42 × 0.37
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.103, 0.137
No. of measured, independent and
observed [I > 2σ(I)] reflections
8969, 3311, 1808
Rint0.136
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.134, 0.83
No. of reflections3311
No. of parameters158
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.50
Absolute structureFlack (1983), 1394 Friedel pairs
Absolute structure parameter0.00 (2)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2E···Br1i0.83 (8)2.39 (8)3.201 (9)169 (10)
N2—H2D···Br2ii0.84 (6)2.48 (4)3.277 (9)159 (8)
N2—H2C···Br10.84 (7)2.47 (7)3.298 (9)173 (8)
N1—H1B···Br20.902.473.355 (7)169.3
N1—H1A···Br2ii0.902.333.224 (7)169.6
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1/2, y+1/2, z.
 

References

First citationBruker (2000). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSeayad, J. & List, B. (2005). Org. Biol. Chem. 3, 719–724.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, D. Q., Luo, S. P., Yue, H. D., Wang, L. P., Liu, Y. K. & Xu, Z. Y. (2006). Synlett, 16, 2569–2572.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds