organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[2-(4-Chloro­phen­yl)propano­yl]-1-methyl­bornane-10,2-sultam

aKey Laboratory of Pesticides and Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: yuguang@mail.ccnu.edu.cn

(Received 30 June 2008; accepted 12 July 2008; online 19 July 2008)

In the mol­ecular structure of the title compound, C20H26ClNO3S, the six-membered ring of the bornane unit shows a boat conformation, while the five-membered ring of the sultam unit adopts a twist conformation. In the crystal structure, mol­ecules are connected by inter­molecular C—H⋯O hydrogen bonds into a chain running along the b axis. Intramolecular C—H⋯O and C—H⋯N hydrogen bonds are also present.

Related literature

For related literature, see: Lu et al. (2008[Lu, W.-C., Cao, J., Cheng, C., Yu, G.-A. & Liu, S.-H. (2008). Acta Cryst. E64, o454.]); Oppolzer (1989[Oppolzer, W. (1989). Tetrahedron Lett. 41, 5603-5606.], 1990[Oppolzer, W. (1990). Pure Appl. Chem. 62, 1241-1250.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26ClNO3S

  • Mr = 395.93

  • Monoclinic, C 2/c

  • a = 24.6517 (10) Å

  • b = 7.6430 (3) Å

  • c = 22.1608 (9) Å

  • β = 109.477 (1)°

  • V = 3936.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 294 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 13035 measured reflections

  • 4301 independent reflections

  • 3266 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.140

  • S = 1.01

  • 4301 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯O3 0.93 2.56 3.038 (3) 112
C13—H13⋯O1 0.98 2.49 3.278 (2) 137
C9—H9C⋯N1 0.96 2.52 3.098 (3) 118
C10—H10⋯O3i 0.98 2.54 3.191 (2) 124
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pioneering work of Oppolzer (1990) has resulted in the development of bornane[10,2]sultams which serve as popular and widely used chiral auxiliaries in asymmetric synthesis. The resulting asymmetric induction using these auxiliaries are high in carbon-carbon bond formation such as alkylation (Oppolzer, 1989), and we have focused our attention on this field (Lu et al., 2008). In this paper, we present X-ray crystallographic analysis of the title compound, (I).

The structure of title compound (I) is different from that of the reported compound (Lu et al., 2008) wherein a proton is substituted by methyl on C10. In (I), the six-member ring of sultam shows a boat conformation (Fig. 1). The planes constructed by C1/C2/C3/C4 and C1/C6/C5/C4 form a dihedral angle of 110.7 (1)°. The C7/C8/C9 plane makes dihedral angles of 90.3 (1)° and 86.5 (2)°, respectively, with C1/C2/C3/C4 and C1/C6/C5/C4 planes. Molecules are linked by intermolecular C—H···O type hydrogen bonds into a one-dimensional chain; intramolecular interactions of the types C—H···O and C—H···N are also present (details are given in Table 1).

Related literature top

For related literature, see: Lu et al. (2008); Oppolzer (1989, 1990).

Experimental top

n-BuLi (4.8 ml, 12.0 mmol) in hexane (25.0 ml) was added over 30 min to a THF (25.0 ml) solution of (+)-N-[2-(4-chlorophenyl)-ethanoyl]bornane-10,2-sultam (1.84 g, 5.0 mmol) at 193 K. After stirring the mixture at 193 K for 1 h, iodomethane (3.2 ml, 51.4 mmol) in hexamethylphosphorous triamide (4.5 ml, 24.6 mmol) was added and then stirred at 193 K for 3 h. The solution was slowly warmed up to room temperature, quenched with water and extraxted by Et2O to afford a crude product. Single crystals appropriate for data collection were obtained by slow evaporation of a dichloromethane solution at 293 K.

Refinement top

All H atoms were constrained to an ideal geometry with C—H = 0.93, 0.96, 0.97 and 0.98 Å for the aromatic, CH3, CH2 and CH type H-atoms, respectively, and Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(the rest C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A perspective drawing of the structure of the title compound with displacement ellipsoids plotted at 50% probability level.
N-[2-(4-Chlorophenyl)propanoyl]-1-methylbornane-10,2-sultam top
Crystal data top
C20H26ClNO3SF(000) = 1680
Mr = 395.93Dx = 1.336 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3899 reflections
a = 24.6517 (10) Åθ = 2.9–26.1°
b = 7.6430 (3) ŵ = 0.32 mm1
c = 22.1608 (9) ÅT = 294 K
β = 109.477 (1)°Block, colorless
V = 3936.4 (3) Å30.20 × 0.10 × 0.10 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
3266 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 27.0°, θmin = 1.8°
ϕ and ω scansh = 3130
13035 measured reflectionsk = 96
4301 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.082P)2]
where P = (Fo2 + 2Fc2)/3
4301 reflections(Δ/σ)max < 0.001
239 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H26ClNO3SV = 3936.4 (3) Å3
Mr = 395.93Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.6517 (10) ŵ = 0.32 mm1
b = 7.6430 (3) ÅT = 294 K
c = 22.1608 (9) Å0.20 × 0.10 × 0.10 mm
β = 109.477 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3266 reflections with I > 2σ(I)
13035 measured reflectionsRint = 0.044
4301 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.01Δρmax = 0.45 e Å3
4301 reflectionsΔρmin = 0.24 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11339 (8)0.3105 (3)0.06399 (9)0.0407 (5)
C20.11867 (10)0.3198 (3)0.13128 (10)0.0594 (6)
H2A0.11370.43870.14740.071*
H2B0.15580.27660.13080.071*
C30.06989 (11)0.2015 (4)0.17175 (11)0.0759 (8)
H3A0.08490.10210.18840.091*
H3B0.04340.26560.20720.091*
C40.04034 (10)0.1423 (4)0.12372 (11)0.0619 (6)
H40.00070.10160.14370.074*
C50.08001 (9)0.0101 (3)0.07791 (11)0.0560 (6)
H5A0.09120.08280.10120.067*
H5B0.06170.04070.04950.067*
C60.13243 (8)0.1241 (3)0.04048 (8)0.0390 (4)
H60.16600.09080.05210.047*
C70.04633 (9)0.3049 (3)0.08060 (11)0.0538 (6)
C80.01610 (12)0.4693 (4)0.11566 (14)0.0815 (9)
H8A0.02480.45220.12970.122*
H8B0.02800.49090.15200.122*
H8C0.02610.56770.08720.122*
C90.02409 (9)0.2754 (3)0.02455 (12)0.0634 (6)
H9A0.01710.26560.04050.095*
H9B0.03510.37230.00450.095*
H9C0.04040.16960.00260.095*
C100.14806 (8)0.4422 (2)0.01475 (9)0.0419 (5)
H100.12290.54010.01310.050*
C110.20150 (10)0.5146 (3)0.02619 (12)0.0589 (6)
H11A0.22410.41960.03330.088*
H11B0.22390.58030.01060.088*
H11C0.19010.58960.06310.088*
C120.16253 (9)0.0273 (3)0.06472 (10)0.0444 (5)
C130.17899 (9)0.0208 (3)0.13723 (9)0.0451 (5)
H130.17680.10060.15040.054*
C140.13447 (11)0.1306 (4)0.15525 (13)0.0689 (7)
H14A0.13460.24820.14000.103*
H14B0.09690.08050.13610.103*
H14C0.14410.13180.20090.103*
C150.23966 (9)0.0879 (3)0.16938 (9)0.0419 (5)
C160.28060 (10)0.0159 (3)0.21258 (10)0.0507 (5)
H160.27050.12790.22130.061*
C170.33565 (10)0.0420 (3)0.24289 (10)0.0558 (6)
H170.36230.02910.27230.067*
C180.35098 (9)0.2068 (3)0.22924 (10)0.0530 (6)
C190.31159 (10)0.3138 (3)0.18749 (11)0.0551 (6)
H190.32220.42530.17880.066*
C200.25609 (10)0.2553 (3)0.15831 (10)0.0507 (5)
H200.22920.32940.13070.061*
Cl10.42204 (3)0.27529 (11)0.26487 (4)0.0863 (3)
N10.14780 (7)0.1266 (2)0.03007 (7)0.0372 (4)
O10.13477 (7)0.3813 (2)0.09856 (7)0.0581 (4)
O20.23002 (7)0.32702 (19)0.09180 (8)0.0600 (4)
O30.15939 (8)0.1640 (2)0.03573 (8)0.0674 (5)
S10.16878 (2)0.32760 (6)0.06102 (2)0.03981 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0384 (10)0.0434 (12)0.0414 (10)0.0058 (8)0.0147 (8)0.0016 (8)
C20.0620 (15)0.0737 (17)0.0449 (12)0.0133 (12)0.0208 (11)0.0074 (11)
C30.0673 (16)0.110 (2)0.0410 (12)0.0176 (16)0.0052 (12)0.0073 (13)
C40.0411 (12)0.0788 (17)0.0534 (13)0.0024 (11)0.0008 (10)0.0144 (12)
C50.0514 (13)0.0531 (14)0.0563 (13)0.0049 (11)0.0084 (10)0.0202 (11)
C60.0379 (10)0.0397 (11)0.0366 (9)0.0034 (8)0.0089 (8)0.0066 (8)
C70.0405 (12)0.0618 (15)0.0549 (12)0.0107 (10)0.0102 (10)0.0027 (11)
C80.0630 (16)0.094 (2)0.0807 (18)0.0351 (15)0.0143 (14)0.0139 (16)
C90.0410 (12)0.0797 (18)0.0727 (15)0.0037 (12)0.0232 (11)0.0082 (13)
C100.0465 (11)0.0315 (10)0.0502 (11)0.0040 (8)0.0194 (9)0.0046 (8)
C110.0618 (14)0.0520 (14)0.0708 (15)0.0099 (11)0.0324 (12)0.0014 (11)
C120.0507 (12)0.0298 (10)0.0495 (11)0.0010 (9)0.0123 (9)0.0026 (9)
C130.0590 (13)0.0325 (11)0.0457 (11)0.0000 (9)0.0202 (10)0.0020 (8)
C140.0620 (15)0.0672 (17)0.0843 (18)0.0009 (13)0.0336 (14)0.0167 (14)
C150.0557 (12)0.0372 (11)0.0364 (9)0.0032 (9)0.0202 (9)0.0022 (8)
C160.0706 (15)0.0392 (12)0.0425 (11)0.0026 (11)0.0191 (10)0.0092 (9)
C170.0621 (14)0.0539 (14)0.0457 (11)0.0073 (11)0.0104 (11)0.0124 (10)
C180.0559 (14)0.0536 (14)0.0480 (11)0.0002 (11)0.0154 (10)0.0012 (10)
C190.0603 (14)0.0398 (13)0.0595 (13)0.0064 (10)0.0123 (11)0.0052 (10)
C200.0582 (13)0.0369 (12)0.0520 (12)0.0068 (10)0.0117 (10)0.0091 (10)
Cl10.0590 (4)0.0855 (6)0.0958 (5)0.0071 (4)0.0011 (4)0.0167 (4)
N10.0455 (9)0.0267 (8)0.0378 (8)0.0014 (7)0.0117 (7)0.0060 (6)
O10.0905 (12)0.0415 (9)0.0516 (9)0.0066 (8)0.0359 (8)0.0060 (7)
O20.0520 (9)0.0478 (9)0.0635 (9)0.0086 (7)0.0032 (7)0.0030 (7)
O30.1027 (14)0.0303 (9)0.0566 (9)0.0054 (8)0.0096 (9)0.0073 (7)
S10.0493 (3)0.0279 (3)0.0407 (3)0.0024 (2)0.0130 (2)0.00589 (19)
Geometric parameters (Å, º) top
C1—C101.521 (3)C10—H100.9800
C1—C61.536 (3)C11—H11A0.9600
C1—C21.541 (3)C11—H11B0.9600
C1—C71.570 (3)C11—H11C0.9600
C2—C31.532 (3)C12—O31.215 (2)
C2—H2A0.9700C12—N11.385 (3)
C2—H2B0.9700C12—C131.521 (3)
C3—C41.544 (4)C13—C151.516 (3)
C3—H3A0.9700C13—C141.537 (3)
C3—H3B0.9700C13—H130.9800
C4—C51.532 (3)C14—H14A0.9600
C4—C71.544 (3)C14—H14B0.9600
C4—H40.9800C14—H14C0.9600
C5—C61.550 (3)C15—C161.386 (3)
C5—H5A0.9700C15—C201.389 (3)
C5—H5B0.9700C16—C171.371 (3)
C6—N11.481 (2)C16—H160.9300
C6—H60.9800C17—C181.377 (3)
C7—C91.532 (3)C17—H170.9300
C7—C81.533 (3)C18—C191.367 (3)
C8—H8A0.9600C18—Cl11.745 (2)
C8—H8B0.9600C19—C201.378 (3)
C8—H8C0.9600C19—H190.9300
C9—H9A0.9600C20—H200.9300
C9—H9B0.9600N1—S11.6915 (15)
C9—H9C0.9600O1—S11.4241 (15)
C10—C111.526 (3)O2—S11.4343 (16)
C10—S11.810 (2)
C10—C1—C6109.61 (15)C1—C10—C11115.50 (17)
C10—C1—C2117.09 (17)C1—C10—S1105.23 (13)
C6—C1—C2104.82 (16)C11—C10—S1109.72 (15)
C10—C1—C7118.83 (16)C1—C10—H10108.7
C6—C1—C7103.48 (16)C11—C10—H10108.7
C2—C1—C7101.34 (16)S1—C10—H10108.7
C3—C2—C1103.66 (19)C10—C11—H11A109.5
C3—C2—H2A111.0C10—C11—H11B109.5
C1—C2—H2A111.0H11A—C11—H11B109.5
C3—C2—H2B111.0C10—C11—H11C109.5
C1—C2—H2B111.0H11A—C11—H11C109.5
H2A—C2—H2B109.0H11B—C11—H11C109.5
C2—C3—C4103.16 (18)O3—C12—N1118.56 (18)
C2—C3—H3A111.1O3—C12—C13122.27 (19)
C4—C3—H3A111.1N1—C12—C13119.09 (17)
C2—C3—H3B111.1C15—C13—C12111.07 (16)
C4—C3—H3B111.1C15—C13—C14111.81 (17)
H3A—C3—H3B109.1C12—C13—C14107.14 (18)
C5—C4—C7102.28 (17)C15—C13—H13108.9
C5—C4—C3107.8 (2)C12—C13—H13108.9
C7—C4—C3102.8 (2)C14—C13—H13108.9
C5—C4—H4114.2C13—C14—H14A109.5
C7—C4—H4114.2C13—C14—H14B109.5
C3—C4—H4114.2H14A—C14—H14B109.5
C4—C5—C6102.59 (19)C13—C14—H14C109.5
C4—C5—H5A111.2H14A—C14—H14C109.5
C6—C5—H5A111.2H14B—C14—H14C109.5
C4—C5—H5B111.2C16—C15—C20117.5 (2)
C6—C5—H5B111.2C16—C15—C13120.57 (19)
H5A—C5—H5B109.2C20—C15—C13121.93 (18)
N1—C6—C1106.71 (14)C17—C16—C15121.8 (2)
N1—C6—C5116.52 (17)C17—C16—H16119.1
C1—C6—C5103.53 (16)C15—C16—H16119.1
N1—C6—H6109.9C16—C17—C18119.1 (2)
C1—C6—H6109.9C16—C17—H17120.4
C5—C6—H6109.9C18—C17—H17120.4
C9—C7—C8106.7 (2)C19—C18—C17120.7 (2)
C9—C7—C4113.4 (2)C19—C18—Cl1120.40 (19)
C8—C7—C4114.6 (2)C17—C18—Cl1118.87 (18)
C9—C7—C1116.57 (17)C18—C19—C20119.6 (2)
C8—C7—C1113.1 (2)C18—C19—H19120.2
C4—C7—C192.46 (16)C20—C19—H19120.2
C7—C8—H8A109.5C19—C20—C15121.2 (2)
C7—C8—H8B109.5C19—C20—H20119.4
H8A—C8—H8B109.5C15—C20—H20119.4
C7—C8—H8C109.5C12—N1—C6120.10 (15)
H8A—C8—H8C109.5C12—N1—S1123.93 (13)
H8B—C8—H8C109.5C6—N1—S1112.09 (12)
C7—C9—H9A109.5O1—S1—O2117.03 (10)
C7—C9—H9B109.5O1—S1—N1109.78 (9)
H9A—C9—H9B109.5O2—S1—N1108.73 (8)
C7—C9—H9C109.5O1—S1—C10111.31 (9)
H9A—C9—H9C109.5O2—S1—C10111.68 (9)
H9B—C9—H9C109.5N1—S1—C1096.30 (8)
C10—C1—C2—C3168.08 (18)N1—C12—C13—C15120.03 (19)
C6—C1—C2—C370.2 (2)O3—C12—C13—C1459.1 (3)
C7—C1—C2—C337.2 (2)N1—C12—C13—C14117.6 (2)
C1—C2—C3—C42.0 (3)C12—C13—C15—C16123.37 (19)
C2—C3—C4—C573.0 (2)C14—C13—C15—C16117.0 (2)
C2—C3—C4—C734.6 (2)C12—C13—C15—C2058.3 (2)
C7—C4—C5—C640.9 (2)C14—C13—C15—C2061.3 (3)
C3—C4—C5—C667.0 (2)C20—C15—C16—C170.9 (3)
C10—C1—C6—N134.1 (2)C13—C15—C16—C17179.30 (19)
C2—C1—C6—N1160.52 (16)C15—C16—C17—C181.1 (3)
C7—C1—C6—N193.67 (17)C16—C17—C18—C191.9 (3)
C10—C1—C6—C5157.54 (16)C16—C17—C18—Cl1176.76 (17)
C2—C1—C6—C575.99 (19)C17—C18—C19—C200.6 (4)
C7—C1—C6—C529.83 (19)Cl1—C18—C19—C20178.02 (18)
C4—C5—C6—N1123.01 (19)C18—C19—C20—C151.5 (3)
C4—C5—C6—C16.2 (2)C16—C15—C20—C192.2 (3)
C5—C4—C7—C963.7 (2)C13—C15—C20—C19179.41 (19)
C3—C4—C7—C9175.50 (19)O3—C12—N1—C64.0 (3)
C5—C4—C7—C8173.5 (2)C13—C12—N1—C6179.12 (16)
C3—C4—C7—C861.8 (2)O3—C12—N1—S1160.07 (17)
C5—C4—C7—C156.7 (2)C13—C12—N1—S123.1 (3)
C3—C4—C7—C155.07 (19)C1—C6—N1—C12175.03 (16)
C10—C1—C7—C956.5 (3)C5—C6—N1—C1260.0 (2)
C6—C1—C7—C965.2 (2)C1—C6—N1—S126.31 (17)
C2—C1—C7—C9173.7 (2)C5—C6—N1—S1141.33 (15)
C10—C1—C7—C867.7 (2)C12—N1—S1—O177.31 (17)
C6—C1—C7—C8170.59 (19)C6—N1—S1—O1124.98 (13)
C2—C1—C7—C862.1 (2)C12—N1—S1—O251.88 (18)
C10—C1—C7—C4174.24 (18)C6—N1—S1—O2105.83 (14)
C6—C1—C7—C452.52 (18)C12—N1—S1—C10167.33 (16)
C2—C1—C7—C455.9 (2)C6—N1—S1—C109.63 (14)
C6—C1—C10—C1194.4 (2)C1—C10—S1—O1103.83 (14)
C2—C1—C10—C1124.8 (3)C11—C10—S1—O1131.31 (15)
C7—C1—C10—C11147.01 (19)C1—C10—S1—O2123.33 (13)
C6—C1—C10—S126.75 (17)C11—C10—S1—O21.53 (18)
C2—C1—C10—S1145.91 (16)C1—C10—S1—N110.28 (13)
C7—C1—C10—S191.84 (18)C11—C10—S1—N1114.58 (15)
O3—C12—C13—C1563.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O30.932.563.038 (3)112
C13—H13···O10.982.493.278 (2)137
C9—H9C···N10.962.523.098 (3)118
C10—H10···O3i0.982.543.191 (2)124
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H26ClNO3S
Mr395.93
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)24.6517 (10), 7.6430 (3), 22.1608 (9)
β (°) 109.477 (1)
V3)3936.4 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13035, 4301, 3266
Rint0.044
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.140, 1.01
No. of reflections4301
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···O30.932.563.038 (3)112
C13—H13···O10.982.493.278 (2)137
C9—H9C···N10.962.523.098 (3)118
C10—H10···O3i0.982.543.191 (2)124
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 20572029 and 20772039) and the Science Foundation of the Ministry of Education for New Teachers at the Universities of China (No. 20070511006).

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLu, W.-C., Cao, J., Cheng, C., Yu, G.-A. & Liu, S.-H. (2008). Acta Cryst. E64, o454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOppolzer, W. (1989). Tetrahedron Lett. 41, 5603–5606.  CrossRef Web of Science Google Scholar
First citationOppolzer, W. (1990). Pure Appl. Chem. 62, 1241–1250.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds