organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­phenyl-2,5,6,8-tetra­hydro-1,2,4-triazolo[3,4-c][1,4]oxazin-4-ium hexa­fluorido­phosphate

aKey Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: jingbolan@scu.edu.cn

(Received 2 June 2008; accepted 18 July 2008; online 26 July 2008)

The title compound, C17H16N3O+·PF6, is a chiral bicyclic 1,2,4-triazolium salt. In the crystal packing, C—H⋯O and C—H⋯F hydrogen bonds and P—F⋯π contacts [4.078 (11)–4.163 (11) Å, involving the triazolium ring] play an important role in enhancing the stability of the crystal structure.

Related literature

For related literature, see: Enders & Kallfass (2002[Enders, D. & Kallfass, U. (2002). Angew. Chem. Int. Ed. 41, 1743-1745.]); Fisher et al. (2006[Fisher, C., Smith, S. W., Powell, D. A. & Fu, G. C. (2006). J. Am. Chem. Soc., 128, 1472-1473.]); Kerr et al., (2002[Kerr, M. S., Alaniz, J. & Rovis, T. (2002). J. Am. Chem. Soc. 124, 10298-10299.]); Knight & Leeper (1998[Knight, R. L. & Leeper, F. J. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1891-893.]); Readde Alaniz & Rovis, (2005[Readde Alaniz, J. & Rovis, T. (2005). J. Am. Chem. Soc. 1274, 6284-6289.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16N3O+·PF6

  • Mr = 423.30

  • Orthorhombic, P 21 21 21

  • a = 8.1706 (6) Å

  • b = 11.4642 (8) Å

  • c = 19.7716 (14) Å

  • V = 1852.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 297 (2) K

  • 0.58 × 0.55 × 0.26 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.850, Tmax = 0.961

  • 10481 measured reflections

  • 3632 independent reflections

  • 3040 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.20

  • 3632 reflections

  • 257 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1537 Friedel pairs

  • Flack parameter: 0.06 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯F2i 0.98 2.48 3.318 (3) 143
C5—H5A⋯Oii 0.93 (2) 2.34 (2) 2.899 (3) 118 (2)
Symmetry codes: (i) x+1, y-1, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Recently, triazolium salts which can be used as the precursors of carbenes are widely used in asymmetric catalysis for the C—C bond formation reactions, such as benzoin reactions (Knight & Leeper, 1998; Enders & Kallfass, 2002), Stetter reactions (Kerr et al., 2002; Readde Alaniz & Rovis, 2005) and Diels–Alder reactions (Fisher et al., 2006) owing to of their good stability and excellent catalytic performance. Most researchs illuminate, that chiral bicyclic 1,2,4–triazole carbenes have excellent enantio–selectivity because they have many bulkier groups and show weaker nucleophility than thiazolium and imiazolium salts. The molecular structure of the title compound (Fig. 1) shows that N1—C5—N3 is typical conjugated fragment because both bonds length N1—C5 = 1.330 (3)Å and N3—C5 = 1.322 (3)Å are longer than double bond N2—C2 = 1.296 (3)Å, but shorter than other N—C bonds (1.366 (3)–1.481 (3)Å) . In intermolecular network, P—F···π(Cg1) interactions [4.078 (11)–4.163 (11)Å] are the main contributor to the interaction of neighboring layers and play an important part in the connection of the adjacent porous layers in the title crystal structure (Cg1 is the triazolium centroid). The interatomic C—H···O and C—H···F hydrogen bond are present - see Table.

Related literature top

For related literature, see: Enders & Kallfass (2002); Fisher et al. (2006); Kerr et al., (2002); Knight & Leeper (1998); Readde Alaniz & Rovis, (2005).

Experimental top

The title compound was prepared according to the method (Knight & Leeper, 1998; Enders & Kallfass, 2002). A solution of 5–ethoxy–3–phenyl–3,6–dihydro–2H–1,4–oxazine (prepared from (R)–2–amino–2–phenylethanol) as a colourless liquid was added dropwise to phenylhydrazine hydrochloride (1.44 g, 10 mmol) in methanol (3 ml). The mixture was then stirred for 30 min, followed by addition of triethyl orthoformate (7.4 g, 50 mmol). After being heated at 353 K for 10 h, the reaction mixture was cooled to room temperature and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel with elution with methanol and followed with anion exchange with ammonium hexafluorophosphate to afford the pure triazolium salt as a white solid in 70% yield. Colourless crystals suitable for X–ray analysis were obtained by slow evaporation of acetone solution. 1H NMR (400 MHz, DMSO): δ 4.05–4.10 (m, 1H), 4.37–4.41 (m, 1H), 5.22 (dd, J = 16 Hz, 16 Hz, 1H), 5.78 (dd, J = 6.0 Hz, 6.0 Hz, 1H), 7.47–7.68 (m, 8H), 7.69–7.91 (m, 2H).

Refinement top

All H atoms (except H5A) were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93Å for aryl, 0.97Å for methylene and 0.98Å for methine with Uiso = 1.2Ueq(C).

1537 Friedel pairs were measured.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at 50% probability level. The H atoms are presented as a small spheres of arbitrary radius.
2,5-Diphenyl-2,5,6,8-tetrahydro-1,2,4-triazolo[3,4-c][1,4]oxazin-4-ium hexafluorophosphate top
Crystal data top
C17H16N3O+·PF6F(000) = 864
Mr = 423.30Dx = 1.518 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4928 reflections
a = 8.1706 (6) Åθ = 2.5–26.0°
b = 11.4642 (8) ŵ = 0.22 mm1
c = 19.7716 (14) ÅT = 297 K
V = 1852.0 (2) Å3Prism, colourless
Z = 40.58 × 0.55 × 0.26 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3632 independent reflections
Radiation source: Fine–focus sealed tube3040 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 107
Tmin = 0.850, Tmax = 0.961k = 1411
10481 measured reflectionsl = 2422
Refinement top
Refinement on F2Secondary atom site location: Difmap
Least-squares matrix: FullHydrogen site location: Geom
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.001
3632 reflectionsΔρmax = 0.19 e Å3
257 parametersΔρmin = 0.22 e Å3
0 restraintsAbsolute structure: Flack (1983), 1537 Friedel pairs
Primary atom site location: DirectAbsolute structure parameter: 0.06 (10)
Crystal data top
C17H16N3O+·PF6V = 1852.0 (2) Å3
Mr = 423.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.1706 (6) ŵ = 0.22 mm1
b = 11.4642 (8) ÅT = 297 K
c = 19.7716 (14) Å0.58 × 0.55 × 0.26 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3632 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3040 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.961Rint = 0.024
10481 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096Δρmax = 0.19 e Å3
S = 1.20Δρmin = 0.22 e Å3
3632 reflectionsAbsolute structure: Flack (1983), 1537 Friedel pairs
257 parametersAbsolute structure parameter: 0.06 (10)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.32742 (6)0.98825 (5)0.80826 (3)0.05508 (16)
F10.2154 (2)0.87484 (13)0.80330 (9)0.0959 (5)
F20.2554 (2)1.02909 (15)0.73698 (7)0.0886 (5)
F30.4387 (2)1.10126 (14)0.80938 (10)0.0966 (5)
F40.4001 (2)0.94705 (14)0.87749 (8)0.0933 (5)
F50.1857 (2)1.05734 (14)0.84539 (8)0.0836 (4)
F60.4689 (2)0.92073 (17)0.76896 (9)0.0978 (5)
O0.9022 (2)0.21782 (15)0.73641 (11)0.0824 (5)
N10.8395 (2)0.01208 (15)0.75583 (9)0.0519 (4)
N20.8073 (2)0.00577 (15)0.86600 (9)0.0584 (4)
N30.8078 (2)0.10971 (15)0.84664 (8)0.0508 (4)
C10.8303 (4)0.19097 (19)0.79941 (16)0.0791 (7)
H1A0.89250.22750.83540.095*
H1B0.71960.22130.80090.095*
C20.8273 (3)0.06202 (18)0.80973 (13)0.0599 (5)
C30.8765 (3)0.02665 (18)0.68603 (12)0.0617 (6)
H3A0.99520.02210.67950.074*
C40.8266 (3)0.1550 (2)0.68261 (15)0.0753 (7)
H4A0.70850.16160.68620.090*
H4B0.85990.18780.63950.090*
C50.8292 (3)0.11963 (19)0.78062 (10)0.0510 (5)
H5A0.844 (3)0.188 (2)0.7561 (11)0.059 (6)*
C60.7964 (3)0.04596 (19)0.63230 (11)0.0605 (6)
C70.8786 (4)0.0594 (3)0.57130 (14)0.0873 (8)
H7A0.98320.02870.56610.105*
C80.8056 (6)0.1181 (3)0.51833 (15)0.1075 (11)
H8A0.86020.12500.47720.129*
C90.6547 (5)0.1658 (3)0.52585 (14)0.0951 (10)
H9A0.60650.20590.49020.114*
C100.5736 (4)0.1547 (3)0.58587 (13)0.0860 (8)
H10A0.47110.18870.59110.103*
C110.6421 (3)0.0937 (2)0.63886 (12)0.0704 (6)
H11A0.58430.08460.67900.085*
C120.7902 (3)0.20118 (18)0.89483 (9)0.0519 (5)
C130.8528 (3)0.1859 (2)0.95942 (11)0.0722 (7)
H13A0.90290.11630.97180.087*
C140.8388 (4)0.2766 (3)1.00491 (13)0.0846 (8)
H14A0.87890.26761.04860.101*
C150.7666 (4)0.3795 (3)0.98659 (13)0.0834 (8)
H15A0.75960.44071.01730.100*
C160.7046 (4)0.3918 (2)0.92254 (13)0.0809 (7)
H16A0.65460.46160.91030.097*
C170.7151 (3)0.3032 (2)0.87617 (11)0.0645 (6)
H17A0.67210.31210.83290.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0415 (3)0.0612 (3)0.0625 (3)0.0005 (2)0.0050 (2)0.0123 (3)
F10.0832 (11)0.0722 (9)0.1322 (14)0.0225 (8)0.0041 (11)0.0090 (9)
F20.0910 (11)0.1006 (11)0.0742 (9)0.0102 (9)0.0220 (8)0.0057 (8)
F30.0760 (10)0.0894 (10)0.1245 (14)0.0297 (9)0.0093 (10)0.0098 (10)
F40.0994 (12)0.1078 (11)0.0726 (9)0.0169 (11)0.0210 (9)0.0051 (9)
F50.0677 (9)0.0933 (10)0.0897 (10)0.0160 (8)0.0122 (8)0.0164 (8)
F60.0666 (9)0.1201 (13)0.1066 (12)0.0267 (10)0.0073 (8)0.0301 (10)
O0.0625 (10)0.0646 (10)0.1201 (15)0.0171 (9)0.0086 (11)0.0158 (10)
N10.0419 (8)0.0518 (9)0.0620 (10)0.0072 (9)0.0024 (7)0.0045 (8)
N20.0485 (9)0.0588 (10)0.0681 (11)0.0013 (9)0.0003 (8)0.0165 (9)
N30.0426 (9)0.0568 (10)0.0530 (9)0.0043 (8)0.0002 (8)0.0044 (8)
C10.0693 (15)0.0540 (12)0.114 (2)0.0035 (12)0.0008 (17)0.0067 (14)
C20.0417 (10)0.0570 (11)0.0810 (15)0.0025 (10)0.0004 (12)0.0044 (12)
C30.0431 (10)0.0719 (13)0.0700 (14)0.0055 (10)0.0067 (10)0.0197 (12)
C40.0557 (13)0.0661 (13)0.1042 (19)0.0062 (12)0.0074 (15)0.0231 (13)
C50.0440 (11)0.0567 (12)0.0523 (11)0.0105 (10)0.0021 (9)0.0015 (9)
C60.0557 (13)0.0633 (13)0.0627 (12)0.0137 (11)0.0087 (11)0.0184 (10)
C70.0816 (18)0.108 (2)0.0727 (17)0.0112 (17)0.0216 (14)0.0218 (16)
C80.129 (3)0.129 (3)0.0636 (17)0.027 (3)0.025 (2)0.0089 (17)
C90.126 (3)0.095 (2)0.0642 (17)0.013 (2)0.0022 (18)0.0077 (14)
C100.097 (2)0.0837 (18)0.0776 (17)0.0105 (17)0.0036 (16)0.0053 (14)
C110.0725 (16)0.0786 (15)0.0602 (13)0.0006 (13)0.0087 (11)0.0010 (11)
C120.0444 (11)0.0618 (12)0.0496 (11)0.0096 (10)0.0010 (8)0.0024 (9)
C130.0699 (16)0.0886 (17)0.0582 (13)0.0045 (14)0.0140 (11)0.0056 (12)
C140.0924 (19)0.112 (2)0.0488 (12)0.0255 (19)0.0122 (13)0.0047 (14)
C150.092 (2)0.098 (2)0.0610 (15)0.0213 (18)0.0092 (13)0.0184 (14)
C160.091 (2)0.0764 (16)0.0754 (15)0.0059 (16)0.0039 (15)0.0108 (13)
C170.0713 (15)0.0686 (13)0.0535 (11)0.0033 (12)0.0045 (11)0.0017 (10)
Geometric parameters (Å, º) top
P—F41.5653 (15)C5—H5A0.93 (2)
P—F31.5829 (17)C6—C111.380 (3)
P—F51.5834 (17)C6—C71.389 (3)
P—F11.5931 (15)C7—C81.380 (5)
P—F61.5935 (18)C7—H7A0.9300
P—F21.5975 (15)C8—C91.357 (5)
O—C11.411 (3)C8—H8A0.9300
O—C41.425 (3)C9—C101.365 (4)
N1—C51.330 (3)C9—H9A0.9300
N1—C21.366 (3)C10—C111.378 (4)
N1—C31.481 (3)C10—H10A0.9300
N2—C21.296 (3)C11—H11A0.9300
N2—N31.378 (2)C12—C171.371 (3)
N3—C51.322 (3)C12—C131.387 (3)
N3—C121.424 (3)C13—C141.379 (4)
C1—C21.493 (3)C13—H13A0.9300
C1—H1A0.9700C14—C151.368 (4)
C1—H1B0.9700C14—H14A0.9300
C3—C61.500 (3)C15—C161.371 (4)
C3—C41.528 (3)C15—H15A0.9300
C3—H3A0.9800C16—C171.371 (3)
C4—H4A0.9700C16—H16A0.9300
C4—H4B0.9700C17—H17A0.9300
F4—P—F390.95 (10)C3—C4—H4B109.7
F4—P—F591.32 (9)H4A—C4—H4B108.2
F3—P—F590.24 (10)N3—C5—N1107.02 (19)
F4—P—F191.47 (10)N3—C5—H5A127.2 (13)
F3—P—F1177.27 (11)N1—C5—H5A125.6 (13)
F5—P—F190.95 (9)C11—C6—C7118.6 (3)
F4—P—F690.26 (10)C11—C6—C3123.5 (2)
F3—P—F689.29 (10)C7—C6—C3117.8 (2)
F5—P—F6178.36 (10)C8—C7—C6120.3 (3)
F1—P—F689.45 (10)C8—C7—H7A119.9
F4—P—F2179.08 (10)C6—C7—H7A119.9
F3—P—F289.10 (10)C9—C8—C7120.4 (3)
F5—P—F289.60 (9)C9—C8—H8A119.8
F1—P—F288.46 (10)C7—C8—H8A119.8
F6—P—F288.83 (9)C8—C9—C10119.9 (3)
C1—O—C4111.6 (2)C8—C9—H9A120.0
C5—N1—C2106.52 (18)C10—C9—H9A120.0
C5—N1—C3129.38 (18)C9—C10—C11120.7 (3)
C2—N1—C3123.73 (18)C9—C10—H10A119.6
C2—N2—N3103.84 (17)C11—C10—H10A119.6
C5—N3—N2110.93 (18)C10—C11—C6120.0 (3)
C5—N3—C12127.64 (18)C10—C11—H11A120.0
N2—N3—C12121.42 (16)C6—C11—H11A120.0
O—C1—C2110.1 (2)C17—C12—C13121.4 (2)
O—C1—H1A109.6C17—C12—N3119.56 (18)
C2—C1—H1A109.6C13—C12—N3119.1 (2)
O—C1—H1B109.6C14—C13—C12118.4 (2)
C2—C1—H1B109.6C14—C13—H13A120.8
H1A—C1—H1B108.2C12—C13—H13A120.8
N2—C2—N1111.67 (18)C15—C14—C13120.9 (2)
N2—C2—C1127.7 (2)C15—C14—H14A119.6
N1—C2—C1120.5 (2)C13—C14—H14A119.6
N1—C3—C6113.87 (18)C14—C15—C16119.5 (2)
N1—C3—C4106.0 (2)C14—C15—H15A120.2
C6—C3—C4112.76 (19)C16—C15—H15A120.2
N1—C3—H3A108.0C17—C16—C15121.2 (3)
C6—C3—H3A108.0C17—C16—H16A119.4
C4—C3—H3A108.0C15—C16—H16A119.4
O—C4—C3109.8 (2)C16—C17—C12118.7 (2)
O—C4—H4A109.7C16—C17—H17A120.7
C3—C4—H4A109.7C12—C17—H17A120.7
O—C4—H4B109.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···F2i0.982.483.318 (3)143
C5—H5A···Oii0.93 (2)2.34 (2)2.899 (3)118 (2)
Symmetry codes: (i) x+1, y1, z; (ii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC17H16N3O+·PF6
Mr423.30
Crystal system, space groupOrthorhombic, P212121
Temperature (K)297
a, b, c (Å)8.1706 (6), 11.4642 (8), 19.7716 (14)
V3)1852.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.58 × 0.55 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.850, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
10481, 3632, 3040
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.20
No. of reflections3632
No. of parameters257
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.22
Absolute structureFlack (1983), 1537 Friedel pairs
Absolute structure parameter0.06 (10)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···F2i0.982.483.318 (3)143
C5—H5A···Oii0.93 (2)2.34 (2)2.899 (3)118 (2)
Symmetry codes: (i) x+1, y1, z; (ii) x+2, y+1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (grant No. 20602027) for financial support.

References

First citationEnders, D. & Kallfass, U. (2002). Angew. Chem. Int. Ed. 41, 1743–1745.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFisher, C., Smith, S. W., Powell, D. A. & Fu, G. C. (2006). J. Am. Chem. Soc., 128, 1472–1473.  Web of Science PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKerr, M. S., Alaniz, J. & Rovis, T. (2002). J. Am. Chem. Soc. 124, 10298–10299.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKnight, R. L. & Leeper, F. J. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1891–893.  Web of Science CrossRef Google Scholar
First citationReadde Alaniz, J. & Rovis, T. (2005). J. Am. Chem. Soc. 1274, 6284–6289.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds