organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hydr­­oxy-5-nitro­benzaldehyde thio­semicarbazone

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 July 2008; accepted 22 July 2008; online 26 July 2008)

The mol­ecule of the title compound, C8H8N4O3S, is planar. Adjacent mol­ecules are linked through O—H⋯S, N—H⋯S and N—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For the structure of 2-hydroxy­benzaldehyde thio­semicarbazone, see: Chattopadhyay et al. (1988[Chattopadhyay, D., Mazumdar, S. K., Banerjee, T., Ghosh, S. & Mak, T. C. W. (1988). Acta Cryst. C44, 1025-1028.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8N4O3S

  • Mr = 240.24

  • Monoclinic, P 21 /n

  • a = 12.6157 (3) Å

  • b = 5.4815 (2) Å

  • c = 14.2397 (2) Å

  • β = 94.039 (2)°

  • V = 982.27 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100 (2) K

  • 0.49 × 0.01 × 0.01 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.856, Tmax = 0.997

  • 9462 measured reflections

  • 2247 independent reflections

  • 1725 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.111

  • S = 1.04

  • 2247 reflections

  • 161 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯S1i 0.84 (1) 2.34 (1) 3.175 (2) 170 (3)
N3—H31⋯S1ii 0.85 (1) 2.50 (1) 3.337 (2) 167 (2)
N4—H41⋯O2iii 0.85 (1) 2.14 (1) 2.987 (2) 172 (3)
N4—H42⋯O3iv 0.85 (1) 2.31 (2) 3.044 (2) 144 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+3, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Salicylaldehyde thiosemicarbazone uses its 2-hydroxy group to form an intramolecular hydrogen bond (Chattopadhyay et al., 1988). In the present compound, the electron-withdrawing nitro group that is para to the hydroxy group renders the hydroxy group much more acidic, so that the compound (Scheme) is able to use the hydroxy group to form a hydrogen bond to an adjacent molecule instead (Fig. 1).

Related literature top

For the structure of 2-hydroxybenzaldehyde thiosemicarbazone, see: Chattopadhyay et al. (1988).

Experimental top

The Schiff base was prepared by refluxing thiosemicarbazide (0.30 g, 3.3 mmol) and 5-nitro-2-hydroxybenzaldehyde (0.55 g, 3.3 mmol) in ethanol for 2 h. The product was recrystallized from ethanol.

Refinement top

Nitrogen- and oxygen-bound hydrogen atoms were refined with a distance restraint of N—H and O—H 0.85 (1) Å. Their temperature factors were freely refined. The carbon-bound ones were placed in geometric positions with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound with the atom numbering scheme (Barbour, 2001). Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
2-Hydroxy-5-nitrobenzaldehyde thiosemicarbazone top
Crystal data top
C8H8N4O3SF(000) = 496
Mr = 240.24Dx = 1.625 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2540 reflections
a = 12.6157 (3) Åθ = 2.2–29.5°
b = 5.4815 (2) ŵ = 0.33 mm1
c = 14.2397 (2) ÅT = 100 K
β = 94.039 (2)°Block, yellow
V = 982.27 (5) Å30.49 × 0.01 × 0.01 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
2247 independent reflections
Radiation source: fine-focus sealed tube1725 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1615
Tmin = 0.856, Tmax = 0.997k = 57
9462 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.4126P]
where P = (Fo2 + 2Fc2)/3
2247 reflections(Δ/σ)max = 0.001
161 parametersΔρmax = 0.47 e Å3
8 restraintsΔρmin = 0.23 e Å3
Crystal data top
C8H8N4O3SV = 982.27 (5) Å3
Mr = 240.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.6157 (3) ŵ = 0.33 mm1
b = 5.4815 (2) ÅT = 100 K
c = 14.2397 (2) Å0.49 × 0.01 × 0.01 mm
β = 94.039 (2)°
Data collection top
Bruker SMART APEX
diffractometer
2247 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1725 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.997Rint = 0.037
9462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0398 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.47 e Å3
2247 reflectionsΔρmin = 0.23 e Å3
161 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 >σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45571 (4)1.58779 (11)0.35227 (3)0.02368 (17)
O10.78686 (12)0.8925 (3)0.67628 (10)0.0271 (4)
O20.92212 (11)0.0797 (3)0.40282 (10)0.0258 (3)
O30.82499 (11)0.3034 (3)0.30592 (9)0.0243 (3)
N10.86480 (13)0.2593 (3)0.38518 (11)0.0200 (4)
N20.64392 (12)1.0445 (3)0.42660 (11)0.0179 (4)
N30.56870 (13)1.2266 (3)0.42711 (11)0.0199 (4)
N40.57458 (14)1.2637 (4)0.26788 (12)0.0222 (4)
C10.80683 (15)0.7307 (4)0.60870 (13)0.0201 (4)
C20.87612 (16)0.5353 (4)0.62369 (13)0.0215 (4)
H20.91060.50930.68430.026*
C30.89488 (15)0.3793 (4)0.55093 (13)0.0211 (4)
H30.94140.24400.56090.025*
C40.84439 (15)0.4236 (4)0.46231 (13)0.0185 (4)
C50.77372 (15)0.6132 (4)0.44565 (13)0.0180 (4)
H50.73980.63780.38470.022*
C60.75301 (14)0.7676 (4)0.51947 (13)0.0179 (4)
C70.67610 (15)0.9650 (4)0.50831 (13)0.0197 (4)
H70.64921.03630.56260.024*
C80.53819 (15)1.3452 (4)0.34732 (13)0.0195 (4)
H10.8337 (17)0.880 (5)0.7212 (14)0.044 (8)*
H310.5515 (19)1.281 (5)0.4800 (11)0.036 (7)*
H410.570 (2)1.360 (4)0.2208 (13)0.038 (7)*
H420.6185 (16)1.145 (3)0.2711 (17)0.030 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0247 (3)0.0265 (3)0.0193 (2)0.0085 (2)0.00213 (18)0.0004 (2)
O10.0303 (8)0.0290 (9)0.0209 (7)0.0072 (7)0.0059 (6)0.0041 (6)
O20.0268 (8)0.0220 (8)0.0287 (7)0.0074 (7)0.0022 (6)0.0008 (6)
O30.0268 (8)0.0259 (9)0.0200 (7)0.0004 (7)0.0016 (6)0.0007 (6)
N10.0181 (8)0.0185 (9)0.0239 (8)0.0036 (7)0.0047 (6)0.0002 (7)
N20.0152 (8)0.0175 (9)0.0210 (7)0.0005 (7)0.0014 (6)0.0008 (6)
N30.0201 (8)0.0220 (10)0.0174 (8)0.0051 (7)0.0008 (6)0.0007 (7)
N40.0249 (9)0.0228 (10)0.0191 (8)0.0049 (8)0.0019 (7)0.0015 (7)
C10.0201 (10)0.0204 (11)0.0200 (9)0.0020 (9)0.0024 (7)0.0005 (8)
C20.0197 (10)0.0242 (12)0.0200 (9)0.0011 (9)0.0029 (7)0.0025 (8)
C30.0178 (10)0.0198 (11)0.0254 (10)0.0022 (8)0.0001 (7)0.0037 (8)
C40.0158 (9)0.0175 (10)0.0224 (9)0.0035 (8)0.0029 (7)0.0005 (8)
C50.0155 (9)0.0187 (11)0.0198 (9)0.0028 (8)0.0012 (7)0.0043 (7)
C60.0149 (9)0.0189 (11)0.0199 (9)0.0013 (8)0.0012 (7)0.0023 (8)
C70.0188 (10)0.0205 (11)0.0198 (9)0.0007 (8)0.0015 (7)0.0010 (8)
C80.0166 (9)0.0208 (11)0.0207 (9)0.0024 (8)0.0016 (7)0.0009 (8)
Geometric parameters (Å, º) top
S1—C81.693 (2)N4—H420.852 (10)
O1—C11.345 (2)C1—C21.390 (3)
O1—H10.842 (10)C1—C61.412 (2)
O2—N11.237 (2)C2—C31.377 (3)
O3—N11.227 (2)C2—H20.9500
N1—C41.457 (3)C3—C41.394 (3)
N2—C71.281 (2)C3—H30.9500
N2—N31.378 (2)C4—C51.379 (3)
N3—C81.342 (2)C5—C61.389 (3)
N3—H310.852 (10)C5—H50.9500
N4—C81.328 (3)C6—C71.455 (3)
N4—H410.853 (10)C7—H70.9500
C1—O1—H1109 (2)C2—C3—H3120.6
O3—N1—O2122.64 (17)C4—C3—H3120.6
O3—N1—C4119.27 (17)C5—C4—C3122.38 (19)
O2—N1—C4118.09 (16)C5—C4—N1118.87 (17)
C7—N2—N3114.57 (16)C3—C4—N1118.73 (18)
C8—N3—N2120.22 (16)C4—C5—C6118.88 (17)
C8—N3—H31120.1 (18)C4—C5—H5120.6
N2—N3—H31118.6 (18)C6—C5—H5120.6
C8—N4—H41116.8 (18)C5—C6—C1119.31 (18)
C8—N4—H42118.3 (17)C5—C6—C7122.03 (17)
H41—N4—H42122 (2)C1—C6—C7118.65 (18)
O1—C1—C2123.07 (17)N2—C7—C6121.22 (18)
O1—C1—C6116.53 (18)N2—C7—H7119.4
C2—C1—C6120.40 (18)C6—C7—H7119.4
C3—C2—C1120.18 (18)N4—C8—N3117.54 (19)
C3—C2—H2119.9N4—C8—S1123.38 (15)
C1—C2—H2119.9N3—C8—S1119.07 (15)
C2—C3—C4118.77 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1i0.84 (1)2.34 (1)3.175 (2)170 (3)
N3—H31···S1ii0.85 (1)2.50 (1)3.337 (2)167 (2)
N4—H41···O2iii0.85 (1)2.14 (1)2.987 (2)172 (3)
N4—H42···O3iv0.85 (1)2.31 (2)3.044 (2)144 (2)
Symmetry codes: (i) x+1/2, y+5/2, z+1/2; (ii) x+1, y+3, z+1; (iii) x+3/2, y+3/2, z+1/2; (iv) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H8N4O3S
Mr240.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.6157 (3), 5.4815 (2), 14.2397 (2)
β (°) 94.039 (2)
V3)982.27 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.49 × 0.01 × 0.01
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.856, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
9462, 2247, 1725
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.04
No. of reflections2247
No. of parameters161
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1i0.84 (1)2.34 (1)3.175 (2)170 (3)
N3—H31···S1ii0.85 (1)2.50 (1)3.337 (2)167 (2)
N4—H41···O2iii0.85 (1)2.14 (1)2.987 (2)172 (3)
N4—H42···O3iv0.85 (1)2.31 (2)3.044 (2)144 (2)
Symmetry codes: (i) x+1/2, y+5/2, z+1/2; (ii) x+1, y+3, z+1; (iii) x+3/2, y+3/2, z+1/2; (iv) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Science Fund (grant Nos. 12-02-03-2031 and 12-02-03-2051) and the University of Malaya (PJP) for supporting this study. We are grateful to the University of Malaya for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChattopadhyay, D., Mazumdar, S. K., Banerjee, T., Ghosh, S. & Mak, T. C. W. (1988). Acta Cryst. C44, 1025–1028.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds