organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1379-o1380

Cytenamide–formic acid (1/1)

aSolid-State Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, The John Arbuthnott Building, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, bWestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, and cUniversity College London, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, England
*Correspondence e-mail: alastair.florence@strath.ac.uk'

(Received 16 May 2008; accepted 24 June 2008; online 5 July 2008)

In the crystal structure of the title compound [systematic name: 5H-dibenzo[a,d]cyclo­hepta­triene-5-carboxamide–meth­anoic acid (1/1)], C16H13NO·CH2O2, the cytenamide and solvent mol­ecules form a hydrogen-bonded R22(8) dimer motif, which is further connected to form a centrosymmetric double-motif arrangement. The asymmetric unit contains two formula units.

Related literature

For details on experimental methods used to obtain this form, see: Davis et al. (1964[Davis, M. A., Winthrop, S. O., Thomas, R. A., Herr, F., Charest, M.-P. & Gaudry, R. (1964). J. Med. Chem. 7, 88-94.]); Florence et al. (2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]); Florence, Johnston, Fernandes et al. (2006[Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922-924.]). For related literature on cytenamide, see: Florence, Bedford et al. (2008[Florence, A. J., Bedford, C. T., Fabbiani, F. P. A., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A. & Fernandes, P. (2008). CrystEngComm. DOI: 10.1039/b719717a.]). For cyten­amide analogues, see: Cyr et al. (1987[Cyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 70, 836-840.]); Fleischman et al. (2003[Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909-919.]); Florence, Johnston, Price et al. (2006[Florence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci. 95, 1918-1930.]); Florence, Leech et al. (2007[Florence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746-747.]); Bandoli et al. (1992[Bandoli, G., Nicolini, M., Ongaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177-183.]); Harrison et al. (2006[Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240-o242.]); Leech et al. (2006[Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, o675-o677.]); Florence, Shankland et al. (2008[Florence, A. J., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A., Fernandes, P. & Leech, C. K. (2008). CrystEngComm, 10, 26-28.]). For graph-set motifs, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO·CH2O2

  • Mr = 281.3

  • Monoclinic, P 21 /c

  • a = 11.5351 (13) Å

  • b = 13.9095 (15) Å

  • c = 17.6904 (19) Å

  • β = 95.846 (5)°

  • V = 2823.6 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 123 (2) K

  • 0.25 × 0.15 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.996

  • 55762 measured reflections

  • 12996 independent reflections

  • 9356 reflections with I > 2/s(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.142

  • S = 1.02

  • 12996 reflections

  • 411 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4 0.884 (15) 2.035 (15) 2.9096 (12) 170.2 (13)
O3—H1O⋯O1 0.927 (18) 1.679 (19) 2.5971 (12) 169.9 (18)
O6—H2O⋯O2 0.91 (2) 1.66 (2) 2.5517 (12) 168.3 (19)
N2—H3N⋯O5 0.895 (15) 2.103 (15) 2.9645 (12) 161.2 (14)
N2—H4N⋯O4 0.843 (16) 2.237 (15) 2.9129 (12) 137.3 (13)
N1—H2N⋯O5 0.866 (16) 2.151 (16) 2.9088 (12) 145.9 (13)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 andSAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 andSAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Cytenamide (CYT) is an analogue of carbamazepine (CBZ), a dibenzazepine drug used to control seizures (Cyr et al., 1987). CYT-formic acid solvate was produced during an automated parallel crystallization study (Florence et al., 2006) of CYT as part of a wider investigation that couples automated parallel crystallization with crystal structure prediction methodology to investigate the basic science underlying the solid-state diversity of CBZ (Florence, Johnston, Price et al., 2006; Florence, Leech et al., 2007) and its closely related analogues: CYT (Florence, Bedford et al., 2008), 10,11-dihydrocarbamazepine (DHC) (Bandoli et al., 1992; Harrison et al., 2006; Leech et al., 2006) and cyheptamide (Florence, Shankland et al., 2008). The sample was identified as a new form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent manual recrystallization from a saturated formic acid solution by slow evaporation at 278 K yielded a sample suitable for single-crystal X-ray diffraction (Fig. 1).

The molecules crystallize in the space group P21/c with two CYT and two solvent molecules in the asymmetric unit. Both CYT molecules form an R22(8) (Etter, 1990) dimer motif with adjacent solvent molecules via contacts 1 - 4 (Table 1). In addition, two N—H···O contacts (5 and 6) join adjacent dimers to form a R42(8) centrosymmetric double motif (Fig. 2).

This packing arrangement is similar to that in CBZ-formic acid solvate which, in contrast, crystallizes with Z' = 1 in the monoclinic space group P21/c (Fig. 2). The main difference being a doubling of the a axis in CYT-formic acid solvate (Z' = 2) (Fleischman et al., 2003)

Related literature top

For details on experimental methods used to obtain this form, see: Davis et al. (1964); Florence et al. (2003); Florence, Johnston, Fernandes et al. (2006). For related literature on cytenamide, see: Florence, Bedford et al. (2008). For associated dibenzazepine molecules, see: Cyr et al. (1987); Fleischman et al. (2003); Florence, Johnston, Price et al. (2006); Florence, Leech et al. (2007); Bandoli et al. (1992); Harrison et al. (2006); Leech et al. (2006); Florence, Shankland et al. (2008). For graph-set motifs, see: Etter (1990).

Experimental top

A sample of cytenamide was synthesized according to a modification of the published method (Davis et al., 1964). A single-crystal sample of the title compound was recrystallized from a saturated formic acid solution by isothermal solvent evaporation at 278 oK.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure and atomic labelling of CYT formic acid, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing in CYT-formic acid (top) and CBZ-formic acid (bottom), viewed down the a-axis. Molecules are coloured according to symmetry equivalence.
5H-dibenzo[a,d]cycloheptatriene-5-carboxamide–methanoic acid (1/1) top
Crystal data top
C16H13NO·CH2O2F(000) = 1184
Mr = 281.3Dx = 1.323 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9893 reflections
a = 11.5351 (13) Åθ = 2.5–35.6°
b = 13.9095 (15) ŵ = 0.09 mm1
c = 17.6904 (19) ÅT = 123 K
β = 95.846 (5)°Block, colourless
V = 2823.6 (5) Å30.25 × 0.15 × 0.05 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
12996 independent reflections
Radiation source: fine-focus sealed tube9356 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 35.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1818
Tmin = 0.978, Tmax = 0.996k = 1822
55762 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0728P)2 + 0.6562P]
where P = (Fo2 + 2Fc2)/3
12996 reflections(Δ/σ)max = 0.002
411 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H13NO·CH2O2V = 2823.6 (5) Å3
Mr = 281.3Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.5351 (13) ŵ = 0.09 mm1
b = 13.9095 (15) ÅT = 123 K
c = 17.6904 (19) Å0.25 × 0.15 × 0.05 mm
β = 95.846 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
12996 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
9356 reflections with I > 2/s(I)
Tmin = 0.978, Tmax = 0.996Rint = 0.025
55762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.58 e Å3
12996 reflectionsΔρmin = 0.23 e Å3
411 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36614 (7)0.30926 (5)0.65575 (4)0.02658 (15)
O20.10330 (7)0.67015 (5)0.37463 (4)0.02342 (14)
O30.19631 (8)0.37994 (6)0.72402 (4)0.02951 (16)
O40.14455 (7)0.47636 (6)0.62510 (4)0.02896 (16)
O50.30232 (7)0.49021 (6)0.40062 (4)0.03007 (17)
O60.23678 (8)0.57335 (6)0.29680 (4)0.03242 (18)
N10.33490 (8)0.39736 (6)0.54859 (5)0.02341 (16)
N20.11769 (8)0.58059 (5)0.48157 (5)0.02066 (15)
C10.50028 (8)0.29386 (6)0.47664 (5)0.01748 (14)
C20.57461 (8)0.35519 (7)0.44219 (5)0.02202 (17)
H20.63030.39210.47310.026*
C30.56919 (9)0.36362 (8)0.36373 (6)0.02555 (19)
H30.62160.40500.34130.031*
C40.48681 (10)0.31127 (7)0.31820 (6)0.02523 (19)
H40.48260.31660.26450.030*
C50.41066 (9)0.25107 (7)0.35153 (5)0.02272 (17)
H50.35280.21700.32010.027*
C60.41737 (8)0.23938 (6)0.43097 (5)0.01853 (15)
C70.33783 (8)0.17138 (6)0.46164 (6)0.02090 (16)
H70.26390.16410.43320.025*
C80.35587 (9)0.11767 (6)0.52507 (6)0.02140 (16)
H80.29340.07690.53550.026*
C90.45948 (8)0.11419 (6)0.57986 (5)0.02008 (16)
C100.48622 (11)0.02677 (7)0.61783 (6)0.0281 (2)
H100.43440.02610.60940.034*
C110.58653 (11)0.01640 (7)0.66714 (6)0.0307 (2)
H110.60320.04310.69230.037*
C120.66267 (10)0.09340 (8)0.67957 (6)0.0282 (2)
H120.73290.08610.71200.034*
C130.63592 (9)0.18121 (7)0.64440 (5)0.02332 (17)
H130.68770.23400.65370.028*
C140.53432 (8)0.19277 (6)0.59577 (5)0.01848 (15)
C150.50395 (8)0.29080 (6)0.56232 (5)0.01808 (15)
H150.56920.33430.58190.022*
C160.39403 (8)0.33227 (6)0.59203 (5)0.01896 (15)
C170.00637 (8)0.82307 (6)0.44107 (5)0.01786 (15)
C180.10409 (9)0.85561 (7)0.39547 (5)0.02321 (17)
H180.17080.81550.38720.028*
C190.10533 (10)0.94622 (8)0.36176 (6)0.0293 (2)
H190.17340.96830.33210.035*
C200.00710 (11)1.00399 (7)0.37167 (6)0.0306 (2)
H200.00701.06540.34810.037*
C210.09067 (10)0.97183 (7)0.41602 (6)0.0263 (2)
H210.15851.01100.42160.032*
C220.09204 (8)0.88216 (6)0.45311 (5)0.01954 (16)
C230.19633 (9)0.85676 (7)0.50299 (6)0.02165 (16)
H230.26790.88120.48870.026*
C240.20378 (8)0.80303 (6)0.56672 (5)0.02076 (16)
H240.27990.79460.59180.025*
C250.10967 (8)0.75612 (6)0.60205 (5)0.01819 (15)
C260.12267 (9)0.74452 (7)0.68148 (5)0.02342 (18)
H260.19360.76350.70950.028*
C270.03445 (11)0.70599 (7)0.71980 (5)0.0276 (2)
H270.04460.69960.77350.033*
C280.06874 (10)0.67688 (8)0.67918 (6)0.02705 (19)
H280.13030.65180.70510.032*
C290.08193 (9)0.68443 (7)0.60040 (5)0.02195 (17)
H290.15210.66290.57290.026*
C300.00612 (8)0.72303 (6)0.56107 (5)0.01725 (14)
C310.00718 (8)0.72319 (6)0.47516 (5)0.01655 (14)
H310.08650.69640.45950.020*
C320.07859 (8)0.65615 (6)0.44077 (5)0.01707 (14)
C330.13195 (9)0.44576 (7)0.68783 (6)0.02455 (18)
C340.30291 (11)0.50955 (7)0.33411 (6)0.0285 (2)
H1N0.2766 (13)0.4268 (10)0.5677 (8)0.029 (3)*
H2N0.3531 (13)0.4124 (11)0.5038 (9)0.034 (4)*
H3N0.1661 (13)0.5407 (11)0.4605 (8)0.029 (3)*
H4N0.1007 (13)0.5752 (10)0.5266 (9)0.029 (4)*
H340.3583 (14)0.4788 (12)0.3007 (10)0.043 (4)*
H330.0717 (13)0.4695 (10)0.7176 (8)0.029 (3)*
H1O0.2537 (16)0.3588 (14)0.6949 (10)0.053 (5)*
H2O0.1899 (17)0.6011 (14)0.3288 (11)0.057 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0355 (4)0.0284 (3)0.0168 (3)0.0098 (3)0.0073 (3)0.0041 (2)
O20.0336 (4)0.0227 (3)0.0146 (3)0.0073 (3)0.0055 (3)0.0018 (2)
O30.0336 (4)0.0363 (4)0.0190 (3)0.0070 (3)0.0042 (3)0.0048 (3)
O40.0346 (4)0.0314 (3)0.0216 (3)0.0098 (3)0.0064 (3)0.0046 (3)
O50.0367 (4)0.0318 (4)0.0218 (3)0.0112 (3)0.0033 (3)0.0044 (3)
O60.0484 (5)0.0313 (4)0.0181 (3)0.0163 (3)0.0061 (3)0.0017 (3)
N10.0319 (4)0.0219 (3)0.0171 (3)0.0081 (3)0.0055 (3)0.0027 (3)
N20.0279 (4)0.0188 (3)0.0154 (3)0.0048 (3)0.0030 (3)0.0018 (2)
C10.0186 (4)0.0186 (3)0.0152 (3)0.0005 (3)0.0015 (3)0.0000 (3)
C20.0198 (4)0.0244 (4)0.0219 (4)0.0018 (3)0.0023 (3)0.0028 (3)
C30.0260 (5)0.0298 (4)0.0220 (4)0.0015 (4)0.0080 (4)0.0050 (3)
C40.0325 (5)0.0270 (4)0.0169 (4)0.0063 (4)0.0064 (3)0.0006 (3)
C50.0285 (5)0.0217 (4)0.0176 (4)0.0025 (3)0.0005 (3)0.0035 (3)
C60.0198 (4)0.0181 (3)0.0177 (4)0.0011 (3)0.0022 (3)0.0019 (3)
C70.0201 (4)0.0200 (3)0.0222 (4)0.0022 (3)0.0005 (3)0.0029 (3)
C80.0218 (4)0.0189 (3)0.0239 (4)0.0020 (3)0.0042 (3)0.0019 (3)
C90.0233 (4)0.0186 (3)0.0188 (4)0.0018 (3)0.0045 (3)0.0006 (3)
C100.0395 (6)0.0184 (4)0.0266 (5)0.0036 (4)0.0037 (4)0.0008 (3)
C110.0432 (6)0.0241 (4)0.0245 (5)0.0135 (4)0.0020 (4)0.0023 (3)
C120.0300 (5)0.0342 (5)0.0204 (4)0.0128 (4)0.0019 (4)0.0017 (4)
C130.0219 (4)0.0305 (4)0.0175 (4)0.0035 (3)0.0016 (3)0.0014 (3)
C140.0195 (4)0.0208 (3)0.0155 (3)0.0020 (3)0.0038 (3)0.0000 (3)
C150.0198 (4)0.0187 (3)0.0156 (3)0.0019 (3)0.0007 (3)0.0004 (3)
C160.0250 (4)0.0168 (3)0.0149 (3)0.0008 (3)0.0012 (3)0.0018 (3)
C170.0212 (4)0.0191 (3)0.0137 (3)0.0049 (3)0.0042 (3)0.0008 (3)
C180.0239 (4)0.0300 (4)0.0160 (4)0.0089 (3)0.0034 (3)0.0027 (3)
C190.0377 (6)0.0325 (5)0.0186 (4)0.0182 (4)0.0071 (4)0.0063 (3)
C200.0505 (7)0.0216 (4)0.0219 (4)0.0135 (4)0.0140 (4)0.0056 (3)
C210.0401 (6)0.0175 (3)0.0232 (4)0.0015 (3)0.0123 (4)0.0011 (3)
C220.0254 (4)0.0172 (3)0.0170 (4)0.0030 (3)0.0069 (3)0.0000 (3)
C230.0218 (4)0.0209 (3)0.0228 (4)0.0014 (3)0.0053 (3)0.0028 (3)
C240.0191 (4)0.0214 (3)0.0214 (4)0.0011 (3)0.0004 (3)0.0034 (3)
C250.0224 (4)0.0174 (3)0.0144 (3)0.0031 (3)0.0004 (3)0.0015 (3)
C260.0310 (5)0.0224 (4)0.0160 (4)0.0028 (3)0.0021 (3)0.0026 (3)
C270.0418 (6)0.0274 (4)0.0138 (4)0.0026 (4)0.0045 (4)0.0012 (3)
C280.0345 (5)0.0297 (4)0.0182 (4)0.0001 (4)0.0091 (4)0.0016 (3)
C290.0244 (4)0.0245 (4)0.0175 (4)0.0001 (3)0.0046 (3)0.0013 (3)
C300.0208 (4)0.0172 (3)0.0139 (3)0.0020 (3)0.0022 (3)0.0001 (3)
C310.0180 (4)0.0187 (3)0.0129 (3)0.0008 (3)0.0013 (3)0.0005 (3)
C320.0200 (4)0.0168 (3)0.0141 (3)0.0006 (3)0.0002 (3)0.0005 (3)
C330.0256 (5)0.0288 (4)0.0190 (4)0.0013 (3)0.0014 (3)0.0025 (3)
C340.0377 (6)0.0260 (4)0.0221 (4)0.0095 (4)0.0044 (4)0.0006 (3)
Geometric parameters (Å, º) top
O1—C161.2451 (11)C12—H120.9500
O2—C321.2473 (11)C13—C141.3907 (13)
O3—C331.3047 (13)C13—H130.9500
O3—H1O0.926 (19)C14—C151.5132 (12)
O4—C331.2111 (13)C15—C161.5338 (13)
O5—C341.2076 (13)C15—H151.0000
O6—C341.3048 (13)C17—C181.3932 (13)
O6—H2O0.91 (2)C17—C221.4000 (13)
N1—C161.3300 (12)C17—C311.5149 (12)
N1—H1N0.884 (15)C18—C191.3937 (14)
N1—H2N0.866 (16)C18—H180.9500
N2—C321.3277 (11)C19—C201.3855 (19)
N2—H3N0.895 (15)C19—H190.9500
N2—H4N0.843 (15)C20—C211.3811 (16)
C1—C21.3931 (13)C20—H200.9500
C1—C61.4086 (12)C21—C221.4087 (13)
C1—C151.5126 (12)C21—H210.9500
C2—C31.3879 (14)C22—C231.4611 (14)
C2—H20.9500C23—C241.3480 (14)
C3—C41.3878 (15)C23—H230.9500
C3—H30.9500C24—C251.4604 (13)
C4—C51.3877 (15)C24—H240.9500
C4—H40.9500C25—C261.4072 (13)
C5—C61.4091 (13)C25—C301.4099 (13)
C5—H50.9500C26—C271.3867 (16)
C6—C71.4601 (13)C26—H260.9500
C7—C81.3465 (14)C27—C281.3867 (16)
C7—H70.9500C27—H270.9500
C8—C91.4608 (14)C28—C291.3904 (14)
C8—H80.9500C28—H280.9500
C9—C141.4034 (13)C29—C301.3956 (13)
C9—C101.4082 (13)C29—H290.9500
C10—C111.3838 (16)C30—C311.5119 (12)
C10—H100.9500C31—C321.5300 (12)
C11—C121.3883 (17)C31—H311.0000
C11—H110.9500C33—H330.972 (15)
C12—C131.3911 (14)C34—H341.008 (17)
C33—O3—H1O110.6 (11)N1—C16—C15116.82 (8)
C34—O6—H2O109.2 (12)C18—C17—C22119.54 (8)
C16—N1—H1N117.3 (9)C18—C17—C31119.41 (8)
C16—N1—H2N122.4 (10)C22—C17—C31121.04 (8)
H1N—N1—H2N120.3 (14)C17—C18—C19120.93 (10)
C32—N2—H3N117.1 (9)C17—C18—H18119.5
C32—N2—H4N119.1 (10)C19—C18—H18119.5
H3N—N2—H4N123.6 (13)C20—C19—C18119.85 (10)
C2—C1—C6119.38 (8)C20—C19—H19120.1
C2—C1—C15120.00 (8)C18—C19—H19120.1
C6—C1—C15120.50 (8)C21—C20—C19119.61 (9)
C3—C2—C1121.48 (9)C21—C20—H20120.2
C3—C2—H2119.3C19—C20—H20120.2
C1—C2—H2119.3C20—C21—C22121.40 (10)
C4—C3—C2119.63 (9)C20—C21—H21119.3
C4—C3—H3120.2C22—C21—H21119.3
C2—C3—H3120.2C17—C22—C21118.59 (9)
C5—C4—C3119.71 (9)C17—C22—C23123.70 (8)
C5—C4—H4120.1C21—C22—C23117.70 (9)
C3—C4—H4120.1C24—C23—C22128.14 (9)
C4—C5—C6121.37 (9)C24—C23—H23115.9
C4—C5—H5119.3C22—C23—H23115.9
C6—C5—H5119.3C23—C24—C25128.22 (9)
C1—C6—C5118.36 (8)C23—C24—H24115.9
C1—C6—C7123.44 (8)C25—C24—H24115.9
C5—C6—C7118.20 (8)C26—C25—C30118.33 (9)
C8—C7—C6128.27 (9)C26—C25—C24118.05 (8)
C8—C7—H7115.9C30—C25—C24123.61 (8)
C6—C7—H7115.9C27—C26—C25121.58 (9)
C7—C8—C9128.16 (9)C27—C26—H26119.2
C7—C8—H8115.9C25—C26—H26119.2
C9—C8—H8115.9C28—C27—C26119.57 (9)
C14—C9—C10118.46 (9)C28—C27—H27120.2
C14—C9—C8123.52 (8)C26—C27—H27120.2
C10—C9—C8118.02 (9)C27—C28—C29119.86 (10)
C11—C10—C9121.28 (10)C27—C28—H28120.1
C11—C10—H10119.4C29—C28—H28120.1
C9—C10—H10119.4C28—C29—C30121.19 (9)
C10—C11—C12119.63 (9)C28—C29—H29119.4
C10—C11—H11120.2C30—C29—H29119.4
C12—C11—H11120.2C29—C30—C25119.38 (8)
C11—C12—C13119.91 (10)C29—C30—C31119.82 (8)
C11—C12—H12120.0C25—C30—C31120.68 (8)
C13—C12—H12120.0C30—C31—C17113.42 (7)
C14—C13—C12120.85 (10)C30—C31—C32113.29 (7)
C14—C13—H13119.6C17—C31—C32111.73 (7)
C12—C13—H13119.6C30—C31—H31105.9
C13—C14—C9119.76 (8)C17—C31—H31105.9
C13—C14—C15119.54 (8)C32—C31—H31105.9
C9—C14—C15120.68 (8)O2—C32—N2122.41 (8)
C1—C15—C14113.51 (7)O2—C32—C31119.78 (7)
C1—C15—C16113.15 (7)N2—C32—C31117.64 (8)
C14—C15—C16111.80 (7)O4—C33—O3125.51 (10)
C1—C15—H15105.9O4—C33—H33122.5 (9)
C14—C15—H15105.9O3—C33—H33112.0 (9)
C16—C15—H15105.9O5—C34—O6125.69 (10)
O1—C16—N1122.24 (9)O5—C34—H34122.9 (10)
O1—C16—C15120.82 (8)O6—C34—H34111.4 (9)
C6—C1—C2—C30.25 (14)C22—C17—C18—C190.09 (13)
C15—C1—C2—C3176.46 (9)C31—C17—C18—C19178.49 (8)
C1—C2—C3—C41.11 (15)C17—C18—C19—C201.91 (15)
C2—C3—C4—C50.03 (15)C18—C19—C20—C211.09 (15)
C3—C4—C5—C62.05 (15)C19—C20—C21—C221.53 (15)
C2—C1—C6—C51.70 (13)C18—C17—C22—C212.46 (13)
C15—C1—C6—C5174.50 (8)C31—C17—C22—C21175.92 (8)
C2—C1—C6—C7178.35 (9)C18—C17—C22—C23176.71 (8)
C15—C1—C6—C75.46 (13)C31—C17—C22—C234.92 (13)
C4—C5—C6—C12.87 (14)C20—C21—C22—C173.31 (14)
C4—C5—C6—C7177.17 (9)C20—C21—C22—C23175.91 (9)
C1—C6—C7—C831.43 (15)C17—C22—C23—C2431.25 (15)
C5—C6—C7—C8148.62 (10)C21—C22—C23—C24147.93 (10)
C6—C7—C8—C90.51 (16)C22—C23—C24—C250.29 (16)
C7—C8—C9—C1430.22 (15)C23—C24—C25—C26149.76 (10)
C7—C8—C9—C10148.87 (10)C23—C24—C25—C3029.39 (14)
C14—C9—C10—C112.97 (15)C30—C25—C26—C273.13 (13)
C8—C9—C10—C11176.17 (10)C24—C25—C26—C27176.06 (9)
C9—C10—C11—C120.07 (16)C25—C26—C27—C280.85 (15)
C10—C11—C12—C132.07 (16)C26—C27—C28—C291.48 (15)
C11—C12—C13—C140.98 (15)C27—C28—C29—C301.49 (15)
C12—C13—C14—C92.12 (14)C28—C29—C30—C250.84 (13)
C12—C13—C14—C15176.15 (9)C28—C29—C30—C31175.30 (9)
C10—C9—C14—C134.02 (14)C26—C25—C30—C293.08 (12)
C8—C9—C14—C13175.07 (9)C24—C25—C30—C29176.06 (8)
C10—C9—C14—C15174.22 (9)C26—C25—C30—C31173.03 (8)
C8—C9—C14—C156.69 (14)C24—C25—C30—C317.83 (12)
C2—C1—C15—C14119.84 (9)C29—C30—C31—C17119.16 (9)
C6—C1—C15—C1463.99 (11)C25—C30—C31—C1764.75 (10)
C2—C1—C15—C16111.37 (9)C29—C30—C31—C32112.12 (9)
C6—C1—C15—C1664.80 (10)C25—C30—C31—C3263.98 (10)
C13—C14—C15—C1117.00 (9)C18—C17—C31—C30118.43 (9)
C9—C14—C15—C164.75 (11)C22—C17—C31—C3063.20 (11)
C13—C14—C15—C16113.52 (9)C18—C17—C31—C32112.05 (9)
C9—C14—C15—C1664.73 (11)C22—C17—C31—C3266.32 (10)
C1—C15—C16—O1157.50 (8)C30—C31—C32—O2157.63 (8)
C14—C15—C16—O127.83 (12)C17—C31—C32—O228.05 (11)
C1—C15—C16—N126.25 (11)C30—C31—C32—N226.99 (11)
C14—C15—C16—N1155.92 (8)C17—C31—C32—N2156.57 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.884 (15)2.035 (15)2.9096 (12)170.2 (13)
O3—H1O···O10.927 (18)1.679 (19)2.5971 (12)169.9 (18)
O6—H2O···O20.91 (2)1.66 (2)2.5517 (12)168.3 (19)
N2—H3N···O50.895 (15)2.103 (15)2.9645 (12)161.2 (14)
N2—H4N···O40.843 (16)2.237 (15)2.9129 (12)137.3 (13)
N1—H2N···O50.866 (16)2.151 (16)2.9088 (12)145.9 (13)

Experimental details

Crystal data
Chemical formulaC16H13NO·CH2O2
Mr281.3
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)11.5351 (13), 13.9095 (15), 17.6904 (19)
β (°) 95.846 (5)
V3)2823.6 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.15 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.978, 0.996
No. of measured, independent and
observed [I > 2/s(I)] reflections
55762, 12996, 9356
Rint0.025
(sin θ/λ)max1)0.821
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.142, 1.02
No. of reflections12996
No. of parameters411
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.884 (15)2.035 (15)2.9096 (12)170.2 (13)
O3—H1O···O10.927 (18)1.679 (19)2.5971 (12)169.9 (18)
O6—H2O···O20.91 (2)1.66 (2)2.5517 (12)168.3 (19)
N2—H3N···O50.895 (15)2.103 (15)2.9645 (12)161.2 (14)
N2—H4N···O40.843 (16)2.237 (15)2.9129 (12)137.3 (13)
N1—H2N···O50.866 (16)2.151 (16)2.9088 (12)145.9 (13)
 

Acknowledgements

The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (www.cposs.org.uk) and AstraZeneca for funding GJM.

References

First citationBandoli, G., Nicolini, M., Ongaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177–183.  CAS Google Scholar
First citationBruker (2007). APEX2 andSAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 70, 836–840.  CAS PubMed Web of Science Google Scholar
First citationDavis, M. A., Winthrop, S. O., Thomas, R. A., Herr, F., Charest, M.-P. & Gaudry, R. (1964). J. Med. Chem. 7, 88–94.  CrossRef PubMed CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909–919.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlorence, A. J., Bedford, C. T., Fabbiani, F. P. A., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A. & Fernandes, P. (2008). CrystEngComm. DOI: 10.1039/b719717a.  Google Scholar
First citationFlorence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922–924.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlorence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci. 95, 1918–1930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlorence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746–747.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlorence, A. J., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A., Fernandes, P. & Leech, C. K. (2008). CrystEngComm, 10, 26–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240–o242.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLeech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, o675–o677.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1379-o1380
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds