organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5,7-Tri­methyl-3-phenyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 6 June 2008; accepted 25 June 2008; online 5 July 2008)

The title compound, C17H16O2S, was prepared by the oxidation of 2,5,7-trimethyl-3-phenyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The O atom and the phenyl group of the phenyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. The phenyl ring is nearly perpendicular to the plane of the benzofuran unit [88.30 (9)°] and is tilted slightly towards it. No ππ or C—H⋯π inter­actions are observed between neighbouring mol­ecules in the crystal structure because of steric hindrance induced by the three methyl groups.

Related literature

For the crystal structures of similar 3-phenyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2007[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4042.], 2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1143.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16O2S

  • Mr = 284.36

  • Monoclinic, P 21 /c

  • a = 18.393 (2) Å

  • b = 6.1515 (6) Å

  • c = 13.054 (1) Å

  • β = 93.024 (2)°

  • V = 1474.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 8615 measured reflections

  • 3215 independent reflections

  • 1611 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.163

  • S = 1.01

  • 3215 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Version 2.1. University of Bonn, Germany.]); software used to prepare material for publication: SHELXL97

Supporting information


Comment top

This work is related to the our communications on the synthesis and structures of 3-phenylsulfinyl-1-benzofuran analogues, viz. 2,5-dimethyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2007) and 2,4,6,7-tetramethyl-3-phenylsulfinyl-1-benzofuran (Choi et al., 2008). Here we report the crystal structure of the title compound, 2,5,7-trimethyl-3-phenylsulfinyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.007 (2) Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9—C14) is almost perpendicular to the plane of the benzofuran ring system [88.30 (9)°] and is tilted slightly towards it. In the crystal structure, ππ or C—H···π interactions between adjacent molecules are prevented by the steric influence of the three methyl groups in the molecule.

Related literature top

For the crystal structures of similar 3-phenylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2007, 2008).

Experimental top

77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 2,5,7-trimethyl-3-phenylsulfanyl-1-benzofuran (268 mg, 1.0 mmol) in dichloromethane (20 ml) at 273 K. After being stirred at room temperature for 2 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 82%, m.p. 393–394 K; Rf = 0.65 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.22 (s, 3H), 2.41 (s, 3H), 2.75 (s, 3H), 6.84 (d, J = 6.96 Hz, 2H), 7.43–7.51 (m, 3H), 7.67 (d, J = 6.60 Hz, 2H); EI—MS 284 [M+].

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoides drawn at the 30% probability level.
2,5,7-Trimethyl-3-phenylsulfinyl-1-benzofuran top
Crystal data top
C17H16O2SF(000) = 600
Mr = 284.36Dx = 1.281 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P_2ybcCell parameters from 1802 reflections
a = 18.393 (2) Åθ = 3.1–24.3°
b = 6.1515 (6) ŵ = 0.22 mm1
c = 13.054 (1) ÅT = 298 K
β = 93.024 (2)°Block, colorless
V = 1474.9 (2) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1611 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.066
Graphite monochromatorθmax = 27.0°, θmin = 1.1°
Detector resolution: 10.0 pixels mm-1h = 1823
ϕ and ω scansk = 67
8615 measured reflectionsl = 1613
3215 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0668P)2 + 0.2115P]
where P = (Fo2 + 2Fc2)/3
3215 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C17H16O2SV = 1474.9 (2) Å3
Mr = 284.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.393 (2) ŵ = 0.22 mm1
b = 6.1515 (6) ÅT = 298 K
c = 13.054 (1) Å0.20 × 0.10 × 0.10 mm
β = 93.024 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1611 reflections with I > 2σ(I)
8615 measured reflectionsRint = 0.066
3215 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
3215 reflectionsΔρmin = 0.20 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.33491 (5)0.75793 (15)0.41600 (7)0.0730 (3)
O10.12972 (11)0.7187 (3)0.31945 (14)0.0536 (5)
O20.34960 (15)0.7328 (5)0.52790 (19)0.1133 (11)
C10.24341 (15)0.6884 (5)0.3874 (2)0.0481 (7)
C20.20160 (15)0.5094 (4)0.42636 (19)0.0438 (7)
C30.21511 (17)0.3364 (5)0.4936 (2)0.0517 (7)
H30.26110.31580.52510.062*
C40.15868 (19)0.1960 (5)0.5125 (2)0.0577 (8)
C50.09051 (19)0.2308 (5)0.4641 (2)0.0653 (9)
H50.05340.13380.47750.078*
C60.07447 (16)0.4016 (5)0.3972 (2)0.0571 (8)
C70.13246 (15)0.5374 (4)0.38166 (19)0.0450 (7)
C80.19788 (17)0.8067 (5)0.3253 (2)0.0517 (7)
C90.37498 (15)0.5292 (5)0.3559 (2)0.0552 (8)
C100.36512 (17)0.5067 (6)0.2517 (3)0.0727 (10)
H100.33750.60730.21340.087*
C110.3964 (2)0.3347 (9)0.2050 (3)0.0974 (14)
H110.38910.31610.13450.117*
C120.4385 (2)0.1893 (8)0.2609 (5)0.1024 (14)
H120.45880.07150.22810.123*
C130.4510 (2)0.2152 (7)0.3637 (4)0.0973 (14)
H130.48070.11790.40090.117*
C140.41888 (19)0.3882 (7)0.4128 (3)0.0779 (11)
H140.42700.40840.48310.094*
C150.1696 (2)0.0106 (6)0.5874 (3)0.0864 (11)
H15A0.22070.00770.60430.130*
H15B0.15030.12070.55690.130*
H15C0.14490.04220.64860.130*
C160.00061 (18)0.4398 (7)0.3461 (3)0.0873 (12)
H16A0.01610.58250.36310.131*
H16B0.03290.33320.36950.131*
H16C0.00350.42800.27310.131*
C170.2083 (2)1.0024 (5)0.2620 (2)0.0760 (10)
H17A0.25481.06620.28030.114*
H17B0.17041.10560.27370.114*
H17C0.20630.96240.19080.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0663 (6)0.0763 (7)0.0762 (6)0.0265 (5)0.0011 (4)0.0218 (5)
O10.0570 (13)0.0537 (13)0.0496 (12)0.0046 (10)0.0005 (9)0.0029 (10)
O20.0903 (18)0.178 (3)0.0700 (17)0.0144 (18)0.0154 (14)0.0556 (17)
C10.0577 (18)0.0457 (17)0.0409 (16)0.0104 (14)0.0017 (13)0.0058 (12)
C20.0541 (17)0.0419 (16)0.0356 (14)0.0058 (13)0.0054 (12)0.0090 (12)
C30.067 (2)0.0490 (17)0.0387 (16)0.0014 (15)0.0030 (14)0.0008 (13)
C40.082 (2)0.0468 (19)0.0457 (18)0.0085 (16)0.0177 (16)0.0021 (13)
C50.073 (2)0.061 (2)0.064 (2)0.0234 (18)0.0229 (17)0.0057 (17)
C60.0527 (19)0.064 (2)0.0554 (19)0.0108 (16)0.0085 (15)0.0140 (16)
C70.0528 (18)0.0443 (17)0.0379 (15)0.0011 (14)0.0025 (13)0.0060 (13)
C80.069 (2)0.0433 (18)0.0434 (16)0.0031 (15)0.0072 (14)0.0056 (13)
C90.0415 (17)0.072 (2)0.0522 (18)0.0146 (15)0.0024 (14)0.0029 (16)
C100.051 (2)0.108 (3)0.058 (2)0.0070 (19)0.0011 (16)0.012 (2)
C110.061 (2)0.144 (4)0.088 (3)0.006 (3)0.006 (2)0.033 (3)
C120.082 (3)0.096 (3)0.132 (4)0.004 (3)0.038 (3)0.022 (3)
C130.074 (3)0.089 (3)0.131 (4)0.008 (2)0.023 (3)0.033 (3)
C140.067 (2)0.100 (3)0.067 (2)0.013 (2)0.0089 (19)0.018 (2)
C150.132 (3)0.063 (2)0.066 (2)0.006 (2)0.026 (2)0.0133 (18)
C160.054 (2)0.107 (3)0.100 (3)0.014 (2)0.001 (2)0.017 (2)
C170.112 (3)0.052 (2)0.065 (2)0.0031 (19)0.015 (2)0.0073 (16)
Geometric parameters (Å, º) top
S—O21.480 (3)C9—C141.376 (4)
S—C11.757 (3)C10—C111.364 (5)
S—C91.789 (3)C10—H100.9300
O1—C81.364 (3)C11—C121.368 (6)
O1—C71.379 (3)C11—H110.9300
C1—C81.347 (4)C12—C131.360 (6)
C1—C21.450 (4)C12—H120.9300
C2—C71.382 (4)C13—C141.390 (6)
C2—C31.393 (4)C13—H130.9300
C3—C41.383 (4)C14—H140.9300
C3—H30.9300C15—H15A0.9600
C4—C51.390 (5)C15—H15B0.9600
C4—C151.509 (4)C15—H15C0.9600
C5—C61.388 (4)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.378 (4)C16—H16C0.9600
C6—C161.500 (4)C17—H17A0.9600
C8—C171.479 (4)C17—H17B0.9600
C9—C101.369 (4)C17—H17C0.9600
O2—S—C1107.90 (15)C11—C10—H10120.5
O2—S—C9107.03 (16)C9—C10—H10120.5
C1—S—C997.32 (13)C10—C11—C12120.6 (4)
C8—O1—C7106.4 (2)C10—C11—H11119.7
C8—C1—C2107.3 (2)C12—C11—H11119.7
C8—C1—S123.7 (2)C13—C12—C11120.8 (4)
C2—C1—S129.0 (2)C13—C12—H12119.6
C7—C2—C3119.4 (3)C11—C12—H12119.6
C7—C2—C1104.5 (2)C12—C13—C14119.4 (4)
C3—C2—C1136.1 (3)C12—C13—H13120.3
C4—C3—C2118.6 (3)C14—C13—H13120.3
C4—C3—H3120.7C9—C14—C13119.0 (4)
C2—C3—H3120.7C9—C14—H14120.5
C3—C4—C5119.4 (3)C13—C14—H14120.5
C3—C4—C15120.8 (3)C4—C15—H15A109.5
C5—C4—C15119.8 (3)C4—C15—H15B109.5
C6—C5—C4124.0 (3)H15A—C15—H15B109.5
C6—C5—H5118.0C4—C15—H15C109.5
C4—C5—H5118.0H15A—C15—H15C109.5
C7—C6—C5114.3 (3)H15B—C15—H15C109.5
C7—C6—C16122.0 (3)C6—C16—H16A109.5
C5—C6—C16123.7 (3)C6—C16—H16B109.5
C6—C7—O1124.9 (3)H16A—C16—H16B109.5
C6—C7—C2124.4 (3)C6—C16—H16C109.5
O1—C7—C2110.7 (2)H16A—C16—H16C109.5
C1—C8—O1111.1 (2)H16B—C16—H16C109.5
C1—C8—C17132.9 (3)C8—C17—H17A109.5
O1—C8—C17115.9 (3)C8—C17—H17B109.5
C10—C9—C14121.1 (3)H17A—C17—H17B109.5
C10—C9—S118.6 (3)C8—C17—H17C109.5
C14—C9—S120.2 (3)H17A—C17—H17C109.5
C11—C10—C9119.1 (4)H17B—C17—H17C109.5
O2—S—C1—C8134.5 (3)C3—C2—C7—C61.3 (4)
C9—S—C1—C8114.9 (3)C1—C2—C7—C6179.7 (3)
O2—S—C1—C242.3 (3)C3—C2—C7—O1178.9 (2)
C9—S—C1—C268.3 (3)C1—C2—C7—O10.1 (3)
C8—C1—C2—C70.5 (3)C2—C1—C8—O10.6 (3)
S—C1—C2—C7177.7 (2)S—C1—C8—O1178.05 (18)
C8—C1—C2—C3178.3 (3)C2—C1—C8—C17178.2 (3)
S—C1—C2—C31.1 (5)S—C1—C8—C174.4 (5)
C7—C2—C3—C40.8 (4)C7—O1—C8—C10.6 (3)
C1—C2—C3—C4179.4 (3)C7—O1—C8—C17178.6 (2)
C2—C3—C4—C50.1 (4)O2—S—C9—C10176.0 (2)
C2—C3—C4—C15177.9 (3)C1—S—C9—C1064.7 (3)
C3—C4—C5—C60.5 (5)O2—S—C9—C148.4 (3)
C15—C4—C5—C6177.5 (3)C1—S—C9—C14119.7 (3)
C4—C5—C6—C70.0 (4)C14—C9—C10—C113.5 (5)
C4—C5—C6—C16179.3 (3)S—C9—C10—C11179.0 (3)
C5—C6—C7—O1179.3 (2)C9—C10—C11—C121.5 (6)
C16—C6—C7—O10.0 (4)C10—C11—C12—C131.1 (7)
C5—C6—C7—C20.9 (4)C11—C12—C13—C141.8 (6)
C16—C6—C7—C2179.8 (3)C10—C9—C14—C132.8 (5)
C8—O1—C7—C6180.0 (3)S—C9—C14—C13178.2 (3)
C8—O1—C7—C20.2 (3)C12—C13—C14—C90.2 (6)

Experimental details

Crystal data
Chemical formulaC17H16O2S
Mr284.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)18.393 (2), 6.1515 (6), 13.054 (1)
β (°) 93.024 (2)
V3)1474.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8615, 3215, 1611
Rint0.066
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.163, 1.01
No. of reflections3215
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

 

References

First citationBrandenburg, K. (1998). DIAMOND. Version 2.1. University of Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds