metal-organic compounds
Di-μ-chlorido-bis[dichlorido(3,3′,5,5′-tetramethyl-4,4′-bipyrazol-1-ium-κN2′)copper(II)] dihydrate
aSchool of Chemistry, University of Bristol, Bristol BS8 1TS, England
*Correspondence e-mail: guy.orpen@bris.ac.uk
The structure of the centrosymmetric title compound, [Cu2Cl6(C10H15N4)2]·2H2O, consists of a dimeric [{(HMe4bpz)CuCl3}2] unit (HMe4bpz is 3,3′,5,5′-tetramethyl-4,4′-bipyrazol-1-ium) with two solvent water molecules. Each [HMe4bpz]+ cation is bonded to a CuCl3 unit through a Cu—N effectively making square-planar geometry at the Cu atom. Two of these units then undergo a face-to-face dimerization so that the Cu atoms have a Jahn–Teller distorted square-pyramidal geometry with three chlorides and an N atom in the basal plane and one chloride weakly bound in the apical position. Several N—H⋯Cl, O—H⋯Cl and N—H⋯O hydrogen bonds form a three-dimensional network.
Related literature
We have been unable to find any references in the literature to any other compound containing a monoprotonated 3,3′,5,5′- tetramethylbipyrazole ligand coordinated only to one metal atom through a single nitrogen donor, but Komarchuk et al. (2004) reported a compound containing two unprotonated tetramethylbipyrazole ligands acting as ligands to a single copper atom. For an exploration of N—H⋯Cl interactions in the design and synthesis of crystal structures with desired properties such as unit-cell metrics or defined reactivity, see: Adams et al. (2005).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808022605/rn2046sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808022605/rn2046Isup2.hkl
An attempt to synthesize tetramethylbipyrazolium tetrachlorocuprate(II) by slow evaporation at room temperature of a solution of equimolar amounts of tetramethylbipyrazole hydrochloride and copper(II) chloride dihydrate in concentrated HCl resulted in the formation of the title compound as a by-product in the form of pale green, plate-like crystals.
H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.84 (2) Å with Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.98 Å and N—H = 0.88 Å, with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C, N).
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).Fig. 1. The molecular structure of I with atom labels and 50% probability displacement ellipsoids for non-H atoms. [Symmetry codes: (A) -x + 2, -y + 3, -z + 1; (B) x, y - 1, z] | |
Fig. 2. Packing of I viewed down the c axis, with O—H···Cl bonds connecting the dimeric units. |
[Cu2Cl6(C10H15N4)2]·2H2O | Z = 1 |
Mr = 758.35 | F(000) = 386 |
Triclinic, P1 | Dx = 1.589 Mg m−3 |
a = 8.2837 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.5907 (6) Å | Cell parameters from 5647 reflections |
c = 10.9058 (6) Å | θ = 2.4–27.5° |
α = 102.4385 (9)° | µ = 1.88 mm−1 |
β = 108.4401 (9)° | T = 173 K |
γ = 110.2613 (8)° | Plate, green |
V = 792.70 (7) Å3 | 0.2 × 0.13 × 0.08 mm |
Bruker SMART CCD area-detector diffractometer | 3609 independent reflections |
Radiation source: fine-focus sealed tube | 3242 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | h = −10→10 |
Tmin = 0.787, Tmax = 0.87 | k = −13→13 |
8466 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.064 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0305P)2 + 0.3154P] where P = (Fo2 + 2Fc2)/3 |
3609 reflections | (Δ/σ)max = 0.002 |
182 parameters | Δρmax = 0.39 e Å−3 |
2 restraints | Δρmin = −0.34 e Å−3 |
[Cu2Cl6(C10H15N4)2]·2H2O | γ = 110.2613 (8)° |
Mr = 758.35 | V = 792.70 (7) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.2837 (4) Å | Mo Kα radiation |
b = 10.5907 (6) Å | µ = 1.88 mm−1 |
c = 10.9058 (6) Å | T = 173 K |
α = 102.4385 (9)° | 0.2 × 0.13 × 0.08 mm |
β = 108.4401 (9)° |
Bruker SMART CCD area-detector diffractometer | 3609 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) | 3242 reflections with I > 2σ(I) |
Tmin = 0.787, Tmax = 0.87 | Rint = 0.023 |
8466 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 2 restraints |
wR(F2) = 0.064 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.39 e Å−3 |
3609 reflections | Δρmin = −0.34 e Å−3 |
182 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 1.11358 (3) | 1.463916 (19) | 0.381212 (19) | 0.01706 (7) | |
Cl1 | 1.38009 (6) | 1.67695 (4) | 0.47299 (5) | 0.02431 (10) | |
Cl2 | 1.16045 (6) | 1.45959 (4) | 0.60262 (4) | 0.02086 (9) | |
Cl3 | 1.04245 (6) | 1.46073 (4) | 0.15868 (4) | 0.02189 (10) | |
N1 | 0.7878 (2) | 1.19314 (14) | 0.32487 (14) | 0.0185 (3) | |
H1A | 0.7400 | 1.2435 | 0.3637 | 0.022* | |
N2 | 0.9482 (2) | 1.25267 (14) | 0.30738 (14) | 0.0178 (3) | |
N3 | 0.7030 (2) | 0.64464 (15) | 0.01465 (15) | 0.0210 (3) | |
H3A | 0.6352 | 0.5632 | −0.0579 | 0.025* | |
N4 | 0.8615 (2) | 0.67473 (15) | 0.12509 (15) | 0.0217 (3) | |
H4A | 0.9136 | 0.6159 | 0.1356 | 0.026* | |
C1 | 0.5323 (3) | 0.9567 (2) | 0.2828 (2) | 0.0291 (4) | |
H1B | 0.5223 | 1.0103 | 0.3631 | 0.044* | |
H1C | 0.5358 | 0.8677 | 0.2923 | 0.044* | |
H1D | 0.4220 | 0.9325 | 0.1977 | 0.044* | |
C2 | 0.7099 (2) | 1.04760 (17) | 0.27573 (17) | 0.0185 (3) | |
C3 | 0.8267 (2) | 1.01087 (17) | 0.22334 (16) | 0.0167 (3) | |
C4 | 0.9734 (2) | 1.14256 (17) | 0.24501 (16) | 0.0172 (3) | |
C5 | 1.1377 (3) | 1.16715 (19) | 0.2077 (2) | 0.0261 (4) | |
H5A | 1.1436 | 1.2324 | 0.1559 | 0.039* | |
H5B | 1.1210 | 1.0746 | 0.1501 | 0.039* | |
H5C | 1.2561 | 1.2106 | 0.2926 | 0.039* | |
C6 | 0.4994 (3) | 0.7602 (2) | −0.0706 (2) | 0.0310 (4) | |
H6A | 0.4776 | 0.7067 | −0.1642 | 0.047* | |
H6B | 0.5248 | 0.8602 | −0.0607 | 0.047* | |
H6C | 0.3862 | 0.7144 | −0.0553 | 0.047* | |
C7 | 0.6656 (2) | 0.75913 (17) | 0.03346 (17) | 0.0192 (3) | |
C8 | 0.8057 (2) | 0.86539 (17) | 0.16027 (17) | 0.0171 (3) | |
C9 | 0.9272 (2) | 0.80751 (17) | 0.21604 (18) | 0.0194 (3) | |
C10 | 1.0961 (3) | 0.8699 (2) | 0.3517 (2) | 0.0290 (4) | |
H10A | 1.1679 | 0.8134 | 0.3499 | 0.044* | |
H10B | 1.0542 | 0.8671 | 0.4260 | 0.044* | |
H10C | 1.1775 | 0.9703 | 0.3684 | 0.044* | |
O1 | 0.50412 (19) | 0.40901 (14) | 0.78153 (14) | 0.0258 (3) | |
H11 | 0.570 (3) | 0.402 (2) | 0.741 (2) | 0.031* | |
H12 | 0.413 (3) | 0.410 (2) | 0.729 (2) | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02091 (11) | 0.01281 (11) | 0.01527 (11) | 0.00629 (8) | 0.00744 (8) | 0.00371 (8) |
Cl1 | 0.0229 (2) | 0.01816 (19) | 0.0263 (2) | 0.00477 (16) | 0.01237 (17) | 0.00262 (16) |
Cl2 | 0.0242 (2) | 0.0218 (2) | 0.0157 (2) | 0.01139 (16) | 0.00700 (16) | 0.00580 (15) |
Cl3 | 0.0302 (2) | 0.0242 (2) | 0.0190 (2) | 0.01682 (18) | 0.01283 (17) | 0.01042 (16) |
N1 | 0.0212 (7) | 0.0162 (7) | 0.0193 (7) | 0.0090 (6) | 0.0104 (6) | 0.0050 (5) |
N2 | 0.0208 (7) | 0.0148 (6) | 0.0168 (7) | 0.0072 (6) | 0.0085 (6) | 0.0045 (5) |
N3 | 0.0246 (7) | 0.0150 (7) | 0.0197 (7) | 0.0082 (6) | 0.0085 (6) | 0.0026 (6) |
N4 | 0.0265 (7) | 0.0186 (7) | 0.0239 (8) | 0.0138 (6) | 0.0112 (6) | 0.0080 (6) |
C1 | 0.0264 (9) | 0.0215 (9) | 0.0384 (11) | 0.0074 (7) | 0.0192 (8) | 0.0069 (8) |
C2 | 0.0202 (8) | 0.0166 (8) | 0.0171 (8) | 0.0085 (7) | 0.0068 (6) | 0.0051 (6) |
C3 | 0.0180 (7) | 0.0152 (7) | 0.0144 (8) | 0.0074 (6) | 0.0049 (6) | 0.0042 (6) |
C4 | 0.0204 (8) | 0.0157 (7) | 0.0145 (8) | 0.0087 (6) | 0.0061 (6) | 0.0047 (6) |
C5 | 0.0269 (9) | 0.0202 (8) | 0.0331 (10) | 0.0099 (7) | 0.0172 (8) | 0.0075 (7) |
C6 | 0.0270 (9) | 0.0258 (9) | 0.0267 (10) | 0.0127 (8) | −0.0001 (8) | 0.0012 (8) |
C7 | 0.0214 (8) | 0.0163 (8) | 0.0197 (8) | 0.0084 (6) | 0.0093 (7) | 0.0056 (6) |
C8 | 0.0194 (7) | 0.0148 (7) | 0.0183 (8) | 0.0081 (6) | 0.0086 (6) | 0.0065 (6) |
C9 | 0.0217 (8) | 0.0177 (8) | 0.0206 (8) | 0.0094 (7) | 0.0095 (7) | 0.0087 (7) |
C10 | 0.0264 (9) | 0.0269 (9) | 0.0284 (10) | 0.0125 (8) | 0.0040 (8) | 0.0110 (8) |
O1 | 0.0243 (7) | 0.0271 (7) | 0.0245 (7) | 0.0119 (6) | 0.0117 (6) | 0.0043 (5) |
Cu1—N2 | 1.9834 (13) | C2—C3 | 1.388 (2) |
Cu1—Cl1 | 2.2684 (5) | C3—C4 | 1.407 (2) |
Cu1—Cl3 | 2.2988 (4) | C3—C8 | 1.470 (2) |
Cu1—Cl2 | 2.3345 (4) | C4—C5 | 1.495 (2) |
Cu1—Cl2i | 2.7029 (5) | C5—H5A | 0.9800 |
Cl2—Cu1i | 2.7029 (5) | C5—H5B | 0.9800 |
N1—C2 | 1.348 (2) | C5—H5C | 0.9800 |
N1—N2 | 1.3538 (19) | C6—C7 | 1.487 (2) |
N1—H1A | 0.8800 | C6—H6A | 0.9800 |
N2—C4 | 1.335 (2) | C6—H6B | 0.9800 |
N3—C7 | 1.342 (2) | C6—H6C | 0.9800 |
N3—N4 | 1.349 (2) | C7—C8 | 1.391 (2) |
N3—H3A | 0.8800 | C8—C9 | 1.400 (2) |
N4—C9 | 1.336 (2) | C9—C10 | 1.487 (2) |
N4—H4A | 0.8800 | C10—H10A | 0.9800 |
C1—C2 | 1.490 (2) | C10—H10B | 0.9800 |
C1—H1B | 0.9800 | C10—H10C | 0.9800 |
C1—H1C | 0.9800 | O1—H11 | 0.811 (15) |
C1—H1D | 0.9800 | O1—H12 | 0.800 (15) |
N2—Cu1—Cl1 | 159.99 (4) | C2—C3—C8 | 127.73 (15) |
N2—Cu1—Cl3 | 90.16 (4) | C4—C3—C8 | 126.42 (14) |
Cl1—Cu1—Cl3 | 92.769 (17) | N2—C4—C3 | 109.72 (14) |
N2—Cu1—Cl2 | 87.45 (4) | N2—C4—C5 | 121.50 (15) |
Cl1—Cu1—Cl2 | 90.762 (17) | C3—C4—C5 | 128.78 (14) |
Cl3—Cu1—Cl2 | 175.537 (17) | C4—C5—H5A | 109.5 |
N2—Cu1—Cl2i | 95.31 (4) | C4—C5—H5B | 109.5 |
Cl1—Cu1—Cl2i | 104.333 (16) | H5A—C5—H5B | 109.5 |
Cl3—Cu1—Cl2i | 92.434 (14) | C4—C5—H5C | 109.5 |
Cl2—Cu1—Cl2i | 84.042 (14) | H5A—C5—H5C | 109.5 |
Cu1—Cl2—Cu1i | 95.958 (14) | H5B—C5—H5C | 109.5 |
C2—N1—N2 | 111.89 (13) | C7—C6—H6A | 109.5 |
C2—N1—H1A | 124.1 | C7—C6—H6B | 109.5 |
N2—N1—H1A | 124.1 | H6A—C6—H6B | 109.5 |
C4—N2—N1 | 106.26 (13) | C7—C6—H6C | 109.5 |
C4—N2—Cu1 | 130.17 (11) | H6A—C6—H6C | 109.5 |
N1—N2—Cu1 | 123.33 (10) | H6B—C6—H6C | 109.5 |
C7—N3—N4 | 108.88 (13) | N3—C7—C8 | 107.84 (14) |
C7—N3—H3A | 125.6 | N3—C7—C6 | 122.10 (15) |
N4—N3—H3A | 125.6 | C8—C7—C6 | 130.06 (15) |
C9—N4—N3 | 109.65 (13) | C7—C8—C9 | 106.25 (14) |
C9—N4—H4A | 125.2 | C7—C8—C3 | 127.55 (14) |
N3—N4—H4A | 125.2 | C9—C8—C3 | 126.19 (15) |
C2—C1—H1B | 109.5 | N4—C9—C8 | 107.39 (15) |
C2—C1—H1C | 109.5 | N4—C9—C10 | 122.58 (15) |
H1B—C1—H1C | 109.5 | C8—C9—C10 | 130.00 (15) |
C2—C1—H1D | 109.5 | C9—C10—H10A | 109.5 |
H1B—C1—H1D | 109.5 | C9—C10—H10B | 109.5 |
H1C—C1—H1D | 109.5 | H10A—C10—H10B | 109.5 |
N1—C2—C3 | 106.28 (15) | C9—C10—H10C | 109.5 |
N1—C2—C1 | 122.23 (15) | H10A—C10—H10C | 109.5 |
C3—C2—C1 | 131.49 (15) | H10B—C10—H10C | 109.5 |
C2—C3—C4 | 105.84 (14) | H11—O1—H12 | 107 (2) |
N2—Cu1—Cl2—Cu1i | −95.61 (4) | N1—N2—C4—C5 | 179.50 (15) |
Cl1—Cu1—Cl2—Cu1i | 104.331 (16) | Cu1—N2—C4—C5 | −6.1 (2) |
Cl2i—Cu1—Cl2—Cu1i | 0.0 | C2—C3—C4—N2 | 0.31 (18) |
C2—N1—N2—C4 | 0.25 (18) | C8—C3—C4—N2 | −178.69 (15) |
C2—N1—N2—Cu1 | −174.59 (11) | C2—C3—C4—C5 | −179.52 (17) |
Cl1—Cu1—N2—C4 | −27.4 (2) | C8—C3—C4—C5 | 1.5 (3) |
Cl3—Cu1—N2—C4 | 71.20 (14) | N4—N3—C7—C8 | 0.06 (19) |
Cl2—Cu1—N2—C4 | −112.57 (14) | N4—N3—C7—C6 | 179.90 (16) |
Cl2i—Cu1—N2—C4 | 163.66 (14) | N3—C7—C8—C9 | −0.39 (19) |
Cl1—Cu1—N2—N1 | 146.16 (10) | C6—C7—C8—C9 | 179.78 (18) |
Cl3—Cu1—N2—N1 | −115.29 (12) | N3—C7—C8—C3 | 178.39 (16) |
Cl2—Cu1—N2—N1 | 60.94 (12) | C6—C7—C8—C3 | −1.4 (3) |
Cl2i—Cu1—N2—N1 | −22.83 (12) | C2—C3—C8—C7 | 69.0 (3) |
C7—N3—N4—C9 | 0.32 (19) | C4—C3—C8—C7 | −112.3 (2) |
N2—N1—C2—C3 | −0.06 (18) | C2—C3—C8—C9 | −112.5 (2) |
N2—N1—C2—C1 | 179.98 (15) | C4—C3—C8—C9 | 66.3 (2) |
N1—C2—C3—C4 | −0.15 (18) | N3—N4—C9—C8 | −0.56 (19) |
C1—C2—C3—C4 | 179.81 (18) | N3—N4—C9—C10 | 177.32 (16) |
N1—C2—C3—C8 | 178.83 (15) | C7—C8—C9—N4 | 0.58 (19) |
C1—C2—C3—C8 | −1.2 (3) | C3—C8—C9—N4 | −178.22 (16) |
N1—N2—C4—C3 | −0.34 (17) | C7—C8—C9—C10 | −177.09 (18) |
Cu1—N2—C4—C3 | 174.02 (11) | C3—C8—C9—C10 | 4.1 (3) |
Symmetry code: (i) −x+2, −y+3, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1i | 0.88 | 2.43 | 3.2625 (14) | 157 |
N3—H3A···O1ii | 0.88 | 1.80 | 2.6786 (19) | 173 |
N4—H4A···Cl3iii | 0.88 | 2.26 | 3.1435 (14) | 179 |
O1—H11···Cl1iv | 0.81 (2) | 2.52 (2) | 3.2640 (14) | 153 (2) |
O1—H11···Cl3iv | 0.81 (2) | 2.74 (2) | 3.3031 (14) | 129 (2) |
O1—H12···Cl2v | 0.80 (2) | 2.40 (2) | 3.1923 (14) | 169 (2) |
Symmetry codes: (i) −x+2, −y+3, −z+1; (ii) x, y, z−1; (iii) x, y−1, z; (iv) −x+2, −y+2, −z+1; (v) x−1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu2Cl6(C10H15N4)2]·2H2O |
Mr | 758.35 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 8.2837 (4), 10.5907 (6), 10.9058 (6) |
α, β, γ (°) | 102.4385 (9), 108.4401 (9), 110.2613 (8) |
V (Å3) | 792.70 (7) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.88 |
Crystal size (mm) | 0.2 × 0.13 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2008a) |
Tmin, Tmax | 0.787, 0.87 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8466, 3609, 3242 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.064, 1.04 |
No. of reflections | 3609 |
No. of parameters | 182 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.39, −0.34 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1i | 0.88 | 2.43 | 3.2625 (14) | 156.9 |
N3—H3A···O1ii | 0.88 | 1.80 | 2.6786 (19) | 173.2 |
N4—H4A···Cl3iii | 0.88 | 2.26 | 3.1435 (14) | 178.8 |
O1—H11···Cl1iv | 0.811 (15) | 2.519 (17) | 3.2640 (14) | 153 (2) |
O1—H11···Cl3iv | 0.811 (15) | 2.74 (2) | 3.3031 (14) | 128.5 (19) |
O1—H12···Cl2v | 0.800 (15) | 2.404 (16) | 3.1923 (14) | 169 (2) |
Symmetry codes: (i) −x+2, −y+3, −z+1; (ii) x, y, z−1; (iii) x, y−1, z; (iv) −x+2, −y+2, −z+1; (v) x−1, y−1, z. |
Acknowledgements
MAK thanks Bayero University, Kano, Nigeria for funding.
References
Adams, C. J., Crawford, P. C., Orpen, A. G., Podesta, T. J. & Salt, B. (2005). Chem. Commun. pp. 2457–2458. Web of Science CSD CrossRef Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Komarchuk, V. V., Ponomarova, V. V., Krautscheid, H. & Domasevitch, K. V. (2004). Z. Anorg. Allg. Chem. 630, 1413–1418. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We have sought to explore N—H···Cl interactions in designing and synthesizing crystal structures with desired properties such as unit cell metrics or defined reactivity (Adams et al., 2005). We aimed to utilize these interactions by reacting 3,3',5,5'- tetramethylbipyrazole dihydrochloride and copper(II) chloride dihydrate in a 1:1 ratio to synthesize (C10H16N4)[CuCl4]. However, the title compound I was obtained instead, crystallizing in the triclinic system with the P1 space group, with a [HMe4bpz]+ cation bonded to a CuCl3- unit through a Cu—N bond, forming a zwitterion. In the crystal structure, water molecules bridge adjacent [{(HMe4bpz)CuCl3}2] dimers through O—H···Cl hydrogen bonds forming a hydrogen bonded ribbon (Fig. 2) along the a-axis.