organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Ammonio-3-(4-nitro­phen­yl)propanoate monohydrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 31 May 2008; accepted 12 June 2008; online 9 July 2008)

The title compound, C9H10N2O4·H2O, exists as a zwitterion with a deprotonated carboxyl group and a protonated amine group. The crystal packing is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, building sheets parallel to the (001) plane.

Related literature

For details on α-amino acids as precursors for the synthesis of novel biologically active compounds, see: Lucchese et al. (2007[Lucchese, G., Stufano, A. & Trost, B. (2007). Amino Acids, 33, 703-707.]); Arki et al. (2004[Arki, A., Tourwe, D., Solymar, M., Fueloep, F., Armstrong, D. W. & Peter, A. (2004). Chromatographia, 60, S43-S54.]); Hauck et al. (2006[Hauck, T., Sunkel, K. & Beck, W. (2006). Z. Anorg. Allg. Chem. 632, 2305-2309.]); Azim et al. (2006[Azim, A., Shah, V. & Doncel, G.-F. (2006). Bioconjugate Chem. 17, 1523-1529.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N2O4·H2O

  • Mr = 228.21

  • Monoclinic, P 21

  • a = 6.2349 (12) Å

  • b = 5.2990 (11) Å

  • c = 15.727 (3) Å

  • β = 101.40 (3)°

  • V = 509.35 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 (2) K

  • 0.30 × 0.25 × 0.15 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.964, Tmax = 0.982

  • 5388 measured reflections

  • 1297 independent reflections

  • 1184 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.140

  • S = 1.14

  • 1297 reflections

  • 153 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.89 2.16 2.745 (4) 123
N2—H2B⋯O4ii 0.89 2.30 2.904 (4) 125
O5—H30⋯O4iii 0.92 (6) 1.81 (6) 2.721 (5) 177 (5)
O5—H31⋯O3iv 0.79 (8) 2.11 (8) 2.809 (4) 148 (6)
Symmetry codes: (i) x, y-1, z; (ii) [-x, y-{\script{1\over 2}}, -z+1]; (iii) x+1, y, z; (iv) x+1, y-1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

α-Amino acids are important molecules due to their pharmacological properties. Recently, there has been an increased interest in the enantiomeric preparation of α-amino acids as precursors for the synthesis of novel biologically active compounds (Lucchese et al., 2007; Arki et al., 2004; Hauck et al., 2006; Azim et al., 2006). Here we report the synthesis and crystal structure of the title compound.

The title compound exists as a zwitter ion with a deprotonated carboxyl group and a protonated amino group (Fig. 1). It crystallizes with one water molecule in the asymmetric unit. The crystal packing is stabilized by intermolecular N—H···O and O—H···O hydrogen bonds building sheets parallel to the (001) plane (Table 1, Fig. 2).

Related literature top

For details on α-amino acids as precursors for the synthesis of novel biologically active compounds, see: Lucchese et al. (2007); Arki et al. (2004); Hauck et al. (2006); Azim et al. (2006).

Experimental top

Under nitrogen protection, 2-amino-3-phenylpropanoic acid (30 mmol), nitric acid (50 mmol) and sulfuric acid (20 mmol) were added in a flask. The mixture was stirred at 110 °C for 3 h. The resulting solution was poured into ice water (100 ml), then filtered and washed with distilled water. The crude product was recrystallized with distilled water to yield colorless block-like crystals, suitable for X-ray analysis.

Refinement top

All H atoms attached to C atoms and N atom were placed geometrically and treated as riding with C—H = 0.98 Å (methine), 0.97 Å (methylene), 0.93 Å (aromatic) and N—H = 0.89 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N). H atoms of water molecule were located in difference Fourier maps and refined freely. In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. All hydrogen atoms not involved in hydrogen bonding (dashed lines) are omitted for clarity.
2-Ammonio-3-(4-nitrophenyl)propanoate monohydrate top
Crystal data top
C9H10N2O4·H2OF(000) = 240
Mr = 228.21Dx = 1.488 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1458 reflections
a = 6.2349 (12) Åθ = 3.3–27.5°
b = 5.2990 (11) ŵ = 0.12 mm1
c = 15.727 (3) ÅT = 293 K
β = 101.40 (3)°Block, colourless
V = 509.35 (18) Å30.30 × 0.25 × 0.15 mm
Z = 2
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
1297 independent reflections
Radiation source: fine-focus sealed tube1184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 66
Tmin = 0.964, Tmax = 0.982l = 2019
5388 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.2902P]
where P = (Fo2 + 2Fc2)/3
1297 reflections(Δ/σ)max < 0.001
153 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = 0.35 e Å3
Crystal data top
C9H10N2O4·H2OV = 509.35 (18) Å3
Mr = 228.21Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.2349 (12) ŵ = 0.12 mm1
b = 5.2990 (11) ÅT = 293 K
c = 15.727 (3) Å0.30 × 0.25 × 0.15 mm
β = 101.40 (3)°
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
1297 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1184 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.982Rint = 0.034
5388 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0511 restraint
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.36 e Å3
1297 reflectionsΔρmin = 0.35 e Å3
153 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3398 (5)0.1706 (7)0.0174 (2)0.0512 (9)
N20.2068 (5)0.9188 (6)0.41031 (19)0.0286 (7)
H2A0.20561.04680.37360.043*
H2B0.09910.93850.43940.043*
H2D0.33450.91540.44750.043*
O30.0544 (4)0.3216 (6)0.34808 (17)0.0342 (6)
C10.3833 (6)0.1391 (8)0.1227 (2)0.0283 (8)
C70.1506 (6)0.7322 (7)0.2635 (2)0.0301 (8)
H7A0.23090.88470.25600.036*
H7B0.00260.76310.23920.036*
O40.1341 (4)0.6381 (6)0.42852 (18)0.0367 (7)
O20.6547 (5)0.1366 (7)0.1010 (2)0.0537 (9)
C50.4472 (6)0.4434 (9)0.2352 (2)0.0346 (9)
H5A0.54130.52210.28070.042*
C90.0204 (5)0.5355 (7)0.3814 (2)0.0243 (7)
C20.1690 (6)0.2143 (9)0.0984 (2)0.0335 (9)
H2C0.07660.13720.05200.040*
C30.0930 (6)0.4068 (9)0.1441 (2)0.0330 (8)
H3A0.05160.46000.12820.040*
N10.4628 (5)0.0705 (7)0.0771 (2)0.0351 (8)
C80.1756 (5)0.6791 (7)0.3613 (2)0.0231 (7)
H8A0.30650.57510.37980.028*
C60.5246 (6)0.2510 (9)0.1903 (2)0.0334 (9)
H6A0.66940.19820.20550.040*
C40.2310 (6)0.5208 (8)0.2133 (2)0.0281 (7)
O50.6393 (5)1.0768 (7)0.4286 (2)0.0412 (7)
H300.715 (8)0.930 (12)0.427 (3)0.047 (14)*
H310.681 (11)1.158 (18)0.393 (4)0.08 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0582 (19)0.050 (2)0.0455 (16)0.0021 (17)0.0115 (14)0.0193 (17)
N20.0280 (14)0.0290 (16)0.0305 (14)0.0084 (13)0.0095 (11)0.0063 (14)
O30.0334 (13)0.0275 (14)0.0409 (14)0.0068 (12)0.0057 (11)0.0025 (13)
C10.0351 (17)0.0278 (19)0.0241 (15)0.0002 (15)0.0111 (13)0.0019 (15)
C70.0401 (19)0.0273 (19)0.0246 (16)0.0030 (16)0.0109 (14)0.0022 (15)
O40.0374 (14)0.0334 (15)0.0452 (14)0.0024 (13)0.0223 (12)0.0027 (13)
O20.0545 (19)0.051 (2)0.0563 (18)0.0224 (17)0.0128 (15)0.0021 (17)
C50.0274 (17)0.044 (2)0.0313 (17)0.0054 (18)0.0037 (14)0.0094 (18)
C90.0244 (15)0.0246 (17)0.0231 (14)0.0003 (14)0.0031 (12)0.0061 (14)
C20.0333 (18)0.041 (2)0.0249 (16)0.0008 (17)0.0024 (14)0.0034 (17)
C30.0320 (17)0.040 (2)0.0263 (16)0.0036 (18)0.0037 (14)0.0015 (17)
N10.0443 (18)0.0350 (18)0.0289 (15)0.0024 (17)0.0143 (14)0.0004 (14)
C80.0263 (15)0.0180 (16)0.0255 (15)0.0014 (13)0.0064 (12)0.0012 (13)
C60.0229 (16)0.045 (2)0.0330 (17)0.0026 (16)0.0071 (13)0.0041 (18)
C40.0327 (17)0.0298 (18)0.0238 (15)0.0028 (16)0.0103 (13)0.0024 (16)
O50.0308 (14)0.0402 (19)0.0557 (18)0.0035 (14)0.0160 (13)0.0028 (15)
Geometric parameters (Å, º) top
O1—N11.211 (4)O2—N11.232 (4)
N2—C81.478 (5)C5—C41.385 (5)
N2—H2A0.8900C5—C61.381 (6)
N2—H2B0.8900C5—H5A0.9300
N2—H2D0.8900C9—C81.524 (5)
O3—C91.249 (5)C2—C31.384 (6)
C1—C61.374 (5)C2—H2C0.9300
C1—C21.374 (5)C3—C41.387 (5)
C1—N11.461 (5)C3—H3A0.9300
C7—C41.512 (5)C8—H8A0.9800
C7—C81.541 (4)C6—H6A0.9300
C7—H7A0.9700O5—H300.92 (6)
C7—H7B0.9700O5—H310.79 (8)
O4—C91.247 (4)
C8—N2—H2A109.5C1—C2—H2C120.5
C8—N2—H2B109.5C3—C2—H2C120.5
H2A—N2—H2B109.5C2—C3—C4120.4 (3)
C8—N2—H2D109.5C2—C3—H3A119.8
H2A—N2—H2D109.5C4—C3—H3A119.8
H2B—N2—H2D109.5O1—N1—O2122.7 (4)
C6—C1—C2122.0 (4)O1—N1—C1119.3 (3)
C6—C1—N1118.7 (3)O2—N1—C1118.0 (3)
C2—C1—N1119.3 (3)N2—C8—C9110.4 (3)
C4—C7—C8114.0 (3)N2—C8—C7109.9 (3)
C4—C7—H7A108.7C9—C8—C7111.7 (3)
C8—C7—H7A108.7N2—C8—H8A108.2
C4—C7—H7B108.7C9—C8—H8A108.2
C8—C7—H7B108.7C7—C8—H8A108.2
H7A—C7—H7B107.6C1—C6—C5118.6 (3)
C4—C5—C6120.9 (3)C1—C6—H6A120.7
C4—C5—H5A119.6C5—C6—H6A120.7
C6—C5—H5A119.6C5—C4—C3119.2 (4)
O4—C9—O3125.1 (3)C5—C4—C7119.8 (3)
O4—C9—C8118.6 (3)C3—C4—C7121.0 (3)
O3—C9—C8116.3 (3)H30—O5—H31101 (6)
C1—C2—C3118.9 (3)
C6—C1—C2—C30.7 (6)C4—C7—C8—N2150.5 (3)
N1—C1—C2—C3177.6 (3)C4—C7—C8—C986.6 (4)
C1—C2—C3—C40.2 (6)C2—C1—C6—C50.5 (6)
C6—C1—N1—O1180.0 (4)N1—C1—C6—C5177.8 (4)
C2—C1—N1—O11.7 (5)C4—C5—C6—C10.7 (6)
C6—C1—N1—O20.6 (5)C6—C5—C4—C31.6 (6)
C2—C1—N1—O2178.9 (4)C6—C5—C4—C7179.9 (4)
O4—C9—C8—N24.9 (4)C2—C3—C4—C51.3 (6)
O3—C9—C8—N2175.4 (3)C2—C3—C4—C7179.6 (3)
O4—C9—C8—C7117.7 (4)C8—C7—C4—C559.3 (5)
O3—C9—C8—C761.9 (4)C8—C7—C4—C3122.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.892.162.745 (4)123
N2—H2B···O4ii0.892.302.904 (4)125
O5—H30···O4iii0.92 (6)1.81 (6)2.721 (5)177 (5)
O5—H31···O3iv0.79 (8)2.11 (8)2.809 (4)148 (6)
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1; (iii) x+1, y, z; (iv) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC9H10N2O4·H2O
Mr228.21
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)6.2349 (12), 5.2990 (11), 15.727 (3)
β (°) 101.40 (3)
V3)509.35 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.25 × 0.15
Data collection
DiffractometerRigaku Mercury2 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.964, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
5388, 1297, 1184
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.140, 1.14
No. of reflections1297
No. of parameters153
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.35

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.892.162.745 (4)123.0
N2—H2B···O4ii0.892.302.904 (4)124.8
O5—H30···O4iii0.92 (6)1.81 (6)2.721 (5)177 (5)
O5—H31···O3iv0.79 (8)2.11 (8)2.809 (4)148 (6)
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+1; (iii) x+1, y, z; (iv) x+1, y1, z.
 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong, and by the Excellent Doctor Degree Foundation from Southeast University to D-WF.

References

First citationArki, A., Tourwe, D., Solymar, M., Fueloep, F., Armstrong, D. W. & Peter, A. (2004). Chromatographia, 60, S43–S54.  Web of Science CrossRef CAS Google Scholar
First citationAzim, A., Shah, V. & Doncel, G.-F. (2006). Bioconjugate Chem. 17, 1523–1529.  Web of Science CrossRef CAS Google Scholar
First citationHauck, T., Sunkel, K. & Beck, W. (2006). Z. Anorg. Allg. Chem. 632, 2305–2309.  Web of Science CrossRef CAS Google Scholar
First citationLucchese, G., Stufano, A. & Trost, B. (2007). Amino Acids, 33, 703–707.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds