organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,2-Tri­methyl-N-(phenyl­sulfon­yl)­acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 6 June 2008; accepted 30 June 2008; online 5 July 2008)

The N—H and C=O bonds of the SO2—NH—CO group in the title compound, C11H15NO3S, are anti to each other. The asymmetric unit contains two independent mol­ecules. The benzene rings form dihedral angles of 83.19 (8) and 76.01 (10)° with the mean planes of the C2NOS fragments. The mol­ecules are linked into chains parallel to the b axis by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Gowda, Nayak et al. (2007[Gowda, B. T., Nayak, R., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2967.]); Gowda, Foro & Fuess (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2329-o2330.]); Gowda, Kožíšek et al. (2007[Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2327-o2328.]); Gowda, Svoboda et al. (2007[Gowda, B. T., Svoboda, I., Paulus, H. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 331-337.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15NO3S

  • Mr = 241.30

  • Monoclinic, P 21 /c

  • a = 12.3045 (9) Å

  • b = 11.3016 (7) Å

  • c = 18.466 (1) Å

  • β = 103.117 (6)°

  • V = 2500.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 299 (2) K

  • 0.50 × 0.48 × 0.40 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.885, Tmax = 0.906

  • 15589 measured reflections

  • 4985 independent reflections

  • 3639 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.167

  • S = 1.16

  • 4985 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4i 0.86 2.09 2.946 (3) 171
N2—H2N⋯O2ii 0.86 2.32 3.094 (3) 151
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of the substituent effects on the solid state geometries of N-(aryl)-sulfonamides and substituted amides, the structure of N-(phenylsulfonyl)-2,2,2-trimethylacetamide (NPSTMAA) has been determined. The conformations of the N—H and C=O bonds of the SO2—NH—CO group in NPSTMAA are anti to each other (Fig. 1). The asymmetric unit of the structure contains two molecules. The bond parameters in NPSTMAA are similar to those in N-(aryl)-2,2,2-trimethylacetamides (Gowda, Foro & Fuess, 2007; Gowda, Kožíšek et al., 2007; Gowda, Svoboda et al., 2007) and benzenesulfonamide (Gowda, Nayak et al., 2007). The benzene rings form dihedral angles of 83.19 (8) and 76.01 (10)° with the mean planes of the C2NOS fragments. A packing diagram of NPSTMAA molecules showing the formation of molecular chains parallel to the b axis through N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For related literature, see: Gowda, Nayak et al. (2007); Gowda, Foro & Fuess (2007); Gowda, Kožíšek et al. (2007); Gowda, Svoboda et al. (2007).

Experimental top

The title compound was prepared by refluxing benzenesulfonamide (0.10 mol) in excess pivalyl chloride (0.20 mol) for about an hour on a water bath. The reaction mixture was cooled and poured into ice-cold water. The resulting solid was separated, washed thoroughly with water and dissolved in a warm sodium hydrogen carbonate solution. The title compound was precipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound suitable for X-ray diffraction studies were obtained by slow evaporation of an ethanol solution.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labeling scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular packing of the title compound viewed along tha a axis. Hydrogen bonds are shown as dashed lines.
2,2,2-Trimethyl-N-(phenylsulfonyl)acetamide top
Crystal data top
C11H15NO3SF(000) = 1024
Mr = 241.30Dx = 1.282 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7426 reflections
a = 12.3045 (9) Åθ = 2.5–28.0°
b = 11.3016 (7) ŵ = 0.25 mm1
c = 18.466 (1) ÅT = 299 K
β = 103.117 (6)°Prism, colourless
V = 2500.9 (3) Å30.50 × 0.48 × 0.40 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
4985 independent reflections
Radiation source: fine-focus sealed tube3639 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1515
Tmin = 0.885, Tmax = 0.906k = 1313
15589 measured reflectionsl = 2122
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0676P)2 + 1.8991P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.002
4985 reflectionsΔρmax = 0.44 e Å3
290 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.100 (4)
Crystal data top
C11H15NO3SV = 2500.9 (3) Å3
Mr = 241.30Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.3045 (9) ŵ = 0.25 mm1
b = 11.3016 (7) ÅT = 299 K
c = 18.466 (1) Å0.50 × 0.48 × 0.40 mm
β = 103.117 (6)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
4985 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3639 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.906Rint = 0.029
15589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.16Δρmax = 0.44 e Å3
4985 reflectionsΔρmin = 0.40 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6562 (2)0.7079 (2)0.00179 (14)0.0448 (6)
C20.7702 (3)0.7222 (3)0.00846 (18)0.0580 (8)
H20.80430.79480.02230.070*
C30.8318 (3)0.6267 (3)0.0058 (2)0.0693 (9)
H30.90820.63500.00150.083*
C40.7817 (3)0.5195 (3)0.02624 (19)0.0679 (9)
H40.82440.45540.03500.081*
C50.6688 (3)0.5067 (3)0.03380 (18)0.0624 (8)
H50.63500.43440.04860.075*
C60.6053 (3)0.6003 (3)0.01956 (16)0.0515 (7)
H60.52890.59130.02420.062*
C70.5886 (2)0.7797 (2)0.15920 (15)0.0440 (6)
C80.6204 (3)0.8245 (3)0.23927 (15)0.0541 (7)
C90.5795 (4)0.7357 (4)0.2886 (2)0.0894 (13)
H9A0.61380.66030.28490.107*
H9B0.50000.72810.27300.107*
H9C0.59900.76250.33930.107*
C100.5687 (3)0.9456 (3)0.24601 (19)0.0713 (9)
H10A0.48890.93990.23070.086*
H10B0.59531.00130.21480.086*
H10C0.58920.97180.29670.086*
C110.7482 (3)0.8339 (4)0.2623 (2)0.0856 (12)
H11A0.77400.88740.22950.103*
H11B0.78050.75720.25960.103*
H11C0.76980.86300.31240.103*
N10.6084 (2)0.8572 (2)0.10554 (12)0.0499 (6)
H1N0.64010.92360.12000.060*
O10.46068 (17)0.79593 (19)0.00518 (12)0.0590 (6)
O20.6126 (2)0.93176 (18)0.01691 (11)0.0613 (6)
O30.54943 (18)0.68328 (17)0.14170 (11)0.0541 (5)
S10.57470 (6)0.82976 (6)0.01579 (4)0.0467 (2)
C120.8299 (2)0.2840 (2)0.14176 (14)0.0476 (6)
C130.9320 (3)0.3399 (3)0.15839 (18)0.0678 (9)
H130.99720.29910.15720.081*
C140.9346 (6)0.4580 (5)0.1769 (2)0.1085 (19)
H141.00280.49730.18880.130*
C150.8403 (8)0.5176 (4)0.1781 (3)0.120 (2)
H150.84420.59750.19050.144*
C160.7397 (5)0.4626 (4)0.1615 (2)0.0985 (16)
H160.67520.50510.16250.118*
C170.7324 (3)0.3431 (3)0.14311 (17)0.0657 (9)
H170.66400.30420.13210.079*
C180.8663 (2)0.1631 (3)0.01406 (16)0.0531 (7)
C190.8292 (3)0.1401 (3)0.09727 (16)0.0547 (7)
C200.9144 (4)0.1923 (4)0.1351 (2)0.0894 (13)
H20A0.98560.15570.11600.107*
H20B0.92020.27590.12580.107*
H20C0.89180.17850.18770.107*
C210.8234 (4)0.0072 (4)0.1109 (2)0.0822 (11)
H21A0.77070.02730.08590.099*
H21B0.89570.02710.09210.099*
H21C0.80020.00790.16330.099*
C220.7149 (4)0.1925 (5)0.1277 (2)0.0991 (15)
H22A0.71750.27640.11930.119*
H22B0.66220.15730.10300.119*
H22C0.69250.17710.18010.119*
N20.7948 (2)0.1235 (2)0.02886 (12)0.0541 (6)
H2N0.73230.09250.00670.065*
O40.7261 (2)0.0845 (2)0.13953 (12)0.0719 (7)
O50.9285 (2)0.0813 (2)0.15009 (14)0.0811 (8)
O60.9519 (2)0.2109 (3)0.01479 (13)0.0823 (8)
S20.82357 (6)0.13285 (7)0.12026 (4)0.0512 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0553 (15)0.0441 (14)0.0354 (12)0.0074 (12)0.0111 (11)0.0005 (10)
C20.0561 (17)0.0525 (17)0.0625 (18)0.0116 (14)0.0070 (14)0.0000 (14)
C30.0572 (19)0.076 (2)0.077 (2)0.0004 (17)0.0198 (16)0.0044 (18)
C40.081 (2)0.061 (2)0.068 (2)0.0118 (17)0.0315 (17)0.0010 (16)
C50.082 (2)0.0481 (17)0.0640 (19)0.0070 (15)0.0306 (16)0.0093 (14)
C60.0598 (17)0.0494 (16)0.0481 (15)0.0122 (13)0.0184 (12)0.0038 (12)
C70.0478 (14)0.0402 (14)0.0453 (14)0.0023 (11)0.0132 (11)0.0035 (11)
C80.0719 (19)0.0524 (16)0.0370 (14)0.0026 (14)0.0103 (13)0.0038 (12)
C90.144 (4)0.079 (3)0.0471 (18)0.019 (3)0.027 (2)0.0023 (17)
C100.092 (3)0.067 (2)0.0593 (19)0.0040 (19)0.0272 (18)0.0160 (16)
C110.082 (3)0.099 (3)0.064 (2)0.008 (2)0.0068 (19)0.011 (2)
N10.0684 (15)0.0436 (12)0.0376 (11)0.0118 (11)0.0119 (10)0.0049 (9)
O10.0524 (12)0.0616 (13)0.0582 (12)0.0000 (10)0.0025 (9)0.0063 (10)
O20.0892 (16)0.0466 (11)0.0499 (11)0.0053 (11)0.0195 (10)0.0045 (9)
O30.0697 (13)0.0420 (11)0.0520 (11)0.0059 (9)0.0165 (9)0.0025 (8)
S10.0585 (4)0.0419 (4)0.0387 (4)0.0035 (3)0.0088 (3)0.0003 (3)
C120.0596 (17)0.0470 (15)0.0345 (13)0.0036 (12)0.0071 (11)0.0018 (11)
C130.077 (2)0.075 (2)0.0491 (17)0.0233 (18)0.0108 (15)0.0077 (15)
C140.172 (5)0.084 (3)0.068 (3)0.066 (4)0.023 (3)0.021 (2)
C150.244 (8)0.054 (3)0.064 (3)0.014 (4)0.039 (4)0.011 (2)
C160.164 (5)0.078 (3)0.057 (2)0.056 (3)0.031 (3)0.005 (2)
C170.077 (2)0.072 (2)0.0467 (16)0.0168 (17)0.0098 (15)0.0002 (15)
C180.0506 (16)0.0640 (18)0.0474 (16)0.0065 (14)0.0164 (12)0.0095 (13)
C190.0563 (17)0.0657 (19)0.0445 (15)0.0009 (14)0.0164 (12)0.0089 (13)
C200.111 (3)0.112 (3)0.053 (2)0.033 (3)0.036 (2)0.012 (2)
C210.114 (3)0.074 (2)0.068 (2)0.010 (2)0.040 (2)0.0204 (18)
C220.085 (3)0.152 (4)0.056 (2)0.037 (3)0.0070 (19)0.008 (2)
N20.0570 (14)0.0692 (16)0.0382 (12)0.0159 (12)0.0152 (10)0.0152 (11)
O40.0986 (18)0.0684 (15)0.0565 (13)0.0316 (13)0.0338 (12)0.0093 (11)
O50.0916 (18)0.0805 (17)0.0672 (15)0.0328 (14)0.0099 (13)0.0079 (13)
O60.0625 (14)0.132 (2)0.0541 (13)0.0361 (15)0.0165 (11)0.0164 (14)
S20.0652 (5)0.0477 (4)0.0410 (4)0.0019 (3)0.0130 (3)0.0016 (3)
Geometric parameters (Å, º) top
C1—C61.384 (4)C12—C131.377 (4)
C1—C21.389 (4)C12—C171.378 (4)
C1—S11.757 (3)C12—S21.752 (3)
C2—C31.378 (5)C13—C141.376 (6)
C2—H20.9300C13—H130.9300
C3—C41.373 (5)C14—C151.347 (8)
C3—H30.9300C14—H140.9300
C4—C51.372 (5)C15—C161.357 (8)
C4—H40.9300C15—H150.9300
C5—C61.375 (4)C16—C171.391 (6)
C5—H50.9300C16—H160.9300
C6—H60.9300C17—H170.9300
C7—O31.206 (3)C18—O61.195 (4)
C7—N11.384 (3)C18—N21.386 (4)
C7—C81.527 (4)C18—C191.523 (4)
C8—C91.516 (5)C19—C201.506 (5)
C8—C101.526 (5)C19—C221.512 (5)
C8—C111.536 (5)C19—C211.522 (5)
C9—H9A0.9600C20—H20A0.9600
C9—H9B0.9600C20—H20B0.9600
C9—H9C0.9600C20—H20C0.9600
C10—H10A0.9600C21—H21A0.9600
C10—H10B0.9600C21—H21B0.9600
C10—H10C0.9600C21—H21C0.9600
C11—H11A0.9600C22—H22A0.9600
C11—H11B0.9600C22—H22B0.9600
C11—H11C0.9600C22—H22C0.9600
N1—S11.644 (2)N2—S21.647 (2)
N1—H1N0.8600N2—H2N0.8600
O1—S11.421 (2)O4—S21.434 (2)
O2—S11.428 (2)O5—S21.410 (2)
C6—C1—C2120.7 (3)C13—C12—C17121.9 (3)
C6—C1—S1119.6 (2)C13—C12—S2119.3 (3)
C2—C1—S1119.6 (2)C17—C12—S2118.8 (2)
C3—C2—C1118.7 (3)C14—C13—C12118.0 (4)
C3—C2—H2120.7C14—C13—H13121.0
C1—C2—H2120.7C12—C13—H13121.0
C4—C3—C2120.8 (3)C15—C14—C13121.2 (5)
C4—C3—H3119.6C15—C14—H14119.4
C2—C3—H3119.6C13—C14—H14119.4
C5—C4—C3120.1 (3)C14—C15—C16120.9 (4)
C5—C4—H4119.9C14—C15—H15119.6
C3—C4—H4119.9C16—C15—H15119.6
C4—C5—C6120.4 (3)C15—C16—C17120.3 (5)
C4—C5—H5119.8C15—C16—H16119.9
C6—C5—H5119.8C17—C16—H16119.9
C5—C6—C1119.4 (3)C12—C17—C16117.8 (4)
C5—C6—H6120.3C12—C17—H17121.1
C1—C6—H6120.3C16—C17—H17121.1
O3—C7—N1120.3 (2)O6—C18—N2120.0 (3)
O3—C7—C8123.9 (3)O6—C18—C19124.0 (3)
N1—C7—C8115.8 (2)N2—C18—C19116.0 (2)
C9—C8—C10110.1 (3)C20—C19—C22111.2 (4)
C9—C8—C7108.4 (3)C20—C19—C21108.7 (3)
C10—C8—C7110.9 (2)C22—C19—C21108.7 (3)
C9—C8—C11109.7 (3)C20—C19—C18108.7 (3)
C10—C8—C11109.6 (3)C22—C19—C18110.4 (3)
C7—C8—C11108.2 (3)C21—C19—C18109.1 (3)
C8—C9—H9A109.5C19—C20—H20A109.5
C8—C9—H9B109.5C19—C20—H20B109.5
H9A—C9—H9B109.5H20A—C20—H20B109.5
C8—C9—H9C109.5C19—C20—H20C109.5
H9A—C9—H9C109.5H20A—C20—H20C109.5
H9B—C9—H9C109.5H20B—C20—H20C109.5
C8—C10—H10A109.5C19—C21—H21A109.5
C8—C10—H10B109.5C19—C21—H21B109.5
H10A—C10—H10B109.5H21A—C21—H21B109.5
C8—C10—H10C109.5C19—C21—H21C109.5
H10A—C10—H10C109.5H21A—C21—H21C109.5
H10B—C10—H10C109.5H21B—C21—H21C109.5
C8—C11—H11A109.5C19—C22—H22A109.5
C8—C11—H11B109.5C19—C22—H22B109.5
H11A—C11—H11B109.5H22A—C22—H22B109.5
C8—C11—H11C109.5C19—C22—H22C109.5
H11A—C11—H11C109.5H22A—C22—H22C109.5
H11B—C11—H11C109.5H22B—C22—H22C109.5
C7—N1—S1123.86 (19)C18—N2—S2123.3 (2)
C7—N1—H1N118.1C18—N2—H2N118.4
S1—N1—H1N118.1S2—N2—H2N118.4
O1—S1—O2119.96 (14)O5—S2—O4119.27 (17)
O1—S1—N1109.45 (13)O5—S2—N2109.80 (14)
O2—S1—N1104.02 (12)O4—S2—N2103.43 (13)
O1—S1—C1108.08 (13)O5—S2—C12108.93 (16)
O2—S1—C1108.55 (13)O4—S2—C12108.21 (14)
N1—S1—C1105.93 (12)N2—S2—C12106.43 (13)
C6—C1—C2—C30.7 (4)C17—C12—C13—C140.2 (5)
S1—C1—C2—C3177.3 (3)S2—C12—C13—C14178.4 (3)
C1—C2—C3—C40.1 (5)C12—C13—C14—C150.6 (6)
C2—C3—C4—C50.9 (5)C13—C14—C15—C160.4 (7)
C3—C4—C5—C61.3 (5)C14—C15—C16—C170.2 (7)
C4—C5—C6—C10.6 (5)C13—C12—C17—C160.4 (5)
C2—C1—C6—C50.4 (4)S2—C12—C17—C16179.0 (3)
S1—C1—C6—C5177.0 (2)C15—C16—C17—C120.6 (6)
O3—C7—C8—C97.8 (4)O6—C18—C19—C202.7 (5)
N1—C7—C8—C9172.8 (3)N2—C18—C19—C20178.1 (3)
O3—C7—C8—C10128.7 (3)O6—C18—C19—C22124.9 (4)
N1—C7—C8—C1051.9 (4)N2—C18—C19—C2256.0 (4)
O3—C7—C8—C11111.1 (3)O6—C18—C19—C21115.7 (4)
N1—C7—C8—C1168.3 (3)N2—C18—C19—C2163.4 (4)
O3—C7—N1—S13.8 (4)O6—C18—N2—S22.9 (5)
C8—C7—N1—S1176.8 (2)C19—C18—N2—S2176.2 (2)
C7—N1—S1—O151.8 (3)C18—N2—S2—O553.0 (3)
C7—N1—S1—O2178.8 (2)C18—N2—S2—O4178.7 (3)
C7—N1—S1—C164.5 (3)C18—N2—S2—C1264.7 (3)
C6—C1—S1—O15.4 (3)C13—C12—S2—O522.0 (3)
C2—C1—S1—O1171.3 (2)C17—C12—S2—O5156.6 (2)
C6—C1—S1—O2136.9 (2)C13—C12—S2—O4153.0 (2)
C2—C1—S1—O239.7 (3)C17—C12—S2—O425.5 (3)
C6—C1—S1—N1111.9 (2)C13—C12—S2—N296.4 (2)
C2—C1—S1—N171.5 (3)C17—C12—S2—N285.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.862.092.946 (3)171
N2—H2N···O2ii0.862.323.094 (3)151
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC11H15NO3S
Mr241.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)12.3045 (9), 11.3016 (7), 18.466 (1)
β (°) 103.117 (6)
V3)2500.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.50 × 0.48 × 0.40
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.885, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
15589, 4985, 3639
Rint0.029
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.167, 1.16
No. of reflections4985
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.40

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4i0.862.092.946 (3)170.9
N2—H2N···O2ii0.862.323.094 (3)150.6
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2329–o2330.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2327–o2328.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Nayak, R., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2967.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I., Paulus, H. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 331–337.  CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds