metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[(4-Bromo­phen­yl)imino­meth­yl]pyridine-κ2N,N′}di­iodidozinc(II)

aDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, and bDepartment of Chemistry, Alzahra University, Vanak, PO Box 1993891176, Tehran, Iran
*Correspondence e-mail: dehganpour_farasha@yahoo.com

(Received 11 June 2008; accepted 4 July 2008; online 9 July 2008)

In the title compound, [ZnI2(C12H9BrN2)], the metal centre displays a moderately distorted tetra­hedral coordination geometry defined by two iodide anions and two N atoms of the organic ligand. The dihedral angle between the pyridine and benzene rings is 15.15 (13)°.

Related literature

For the crystal structure of similar imino­pyridine complexes, see: Dehghanpour, Mahmoudi, Khalaj & Salmanpour (2007[Dehghanpour, S., Mahmoudi, A., Khalaj, M. & Salmanpour, S. (2007). Acta Cryst. E63, m2840.]); Dehghanpour, Mahmoudi, Khalaj, Salmanpour & Adib (2007[Dehghanpour, S., Mahmoudi, A., Khalaj, M., Salmanpour, S. & Adib, M. (2007). Acta Cryst. E63, m2841.]). For related structures see: Lee et al. (2008[Lee, S. H., Kim, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m511.]); Wriedt et al. (2008[Wriedt, M., Jess, I. & Näther, C. (2008). Acta Cryst. E64, m11.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnI2(C12H9BrN2)]

  • Mr = 580.29

  • Triclinic, [P \overline 1]

  • a = 8.0749 (9) Å

  • b = 9.7323 (11) Å

  • c = 11.1884 (13) Å

  • α = 79.157 (2)°

  • β = 71.178 (3)°

  • γ = 67.325 (2)°

  • V = 765.87 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.23 mm−1

  • T = 100 (2) K

  • 0.45 × 0.21 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.135, Tmax = 0.378

  • 9814 measured reflections

  • 4449 independent reflections

  • 3983 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.084

  • S = 1.01

  • 4449 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 1.94 e Å−3

  • Δρmin = −1.96 e Å−3

Table 1
Selected geometric parameters (Å, °)

I1—Zn1 2.5201 (5)
I2—Zn1 2.5389 (5)
Zn1—N1 2.062 (3)
Zn1—N2 2.094 (3)
N1—Zn1—N2 80.30 (11)
N1—Zn1—I1 117.81 (8)
N2—Zn1—I1 117.60 (8)
N1—Zn1—I2 109.45 (8)
N2—Zn1—I2 110.18 (8)
I1—Zn1—I2 116.210 (17)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Iminopyridines derivatives are common ligands and many complexes containing these ligands have been reported. Recently, the crystal structure of zinc(II)-complexes similar to the title compound has been reported by our group (Dehghanpour, Mahmoudi, Khalaj & Salmanpour, 2007; Dehghanpour, Mahmoudi, Khalaj, Salmanpour & Adib, 2007).

The molecular structure of the title compound and the atom numbering scheme are shown in Fig. 1. The structure consists of discrete [ZnI2(C12H9BrN2)] complex molecules where the metal centre has a tetrahedral coordination geometry which shows significant distortion, mainly due to the presence of the five-membered chelate ring. The endocyclic N1—Zn1—N2 angle (Table 1) is much narrower than the ideal tetrahedral angle of 109.5°, whereas the opposite I1—Zn1—I2 angle is much wider. Bond lengths involving the Zn atom are in good agreement with the values found in the literature for tetrahedral zinc(II) complexes (Lee et al., 2008; Wriedt et al., 2008). The dihedral angle formed by the pyridine and benzene ring is 15.15 (13)°. The crystal structure is enforced by van der Waals interactions only.

Related literature top

For the crystal structure of similar iminopyridine complexes, see: Dehghanpour, Mahmoudi, Khalaj & Salmanpour (2007); Dehghanpour, Mahmoudi, Khalaj, Salmanpour & Adib (2007). For related structures see: Lee et al. (2008); Wriedt et al. (2008).

Experimental top

To a solution of (4-bromo-phenyl)-pyridin-2-ylmethylene-amine (26.1 mg, 0.1 mmol) in acetonitrile (20 ml) was added zinc iodide (31.9 mg, 0.1 mmol). The mixture was heated to dissolve the reactants. The solution was filtered and the volume of solvent removed under vacuum to about 5 ml. The diffusion of diethyl ether vapor into the solution gave yellow crystals. The crystals were collected and washed with diethylether-dichloromethane (9:1 v/v); yield 81%. Calc. for C12H9BrI2N2Zn: C 24.84, H 1.56, N 4.83%; found: C 24.86, H 1.55, N 4.82%.

Refinement top

All hydrogen atoms were placed geometrically and refined in isotropic approximation in riding model with the Uiso(H) parameters equal to 1.2Ueq(C). There is a high positive residual density of 1.93 e Å-3 at 0.83 Å from atom I2 due to considerable absorption effects which could not be completely corrected.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and thermal ellipsoids drawn at the 50% probability level.
{2-[(4-Bromophenyl)iminomethyl]pyridine-κ2N,N'}diiodidozinc(II) top
Crystal data top
[ZnI2(C12H9BrN2)]Z = 2
Mr = 580.29F(000) = 532
Triclinic, P1Dx = 2.516 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0749 (9) ÅCell parameters from 1953 reflections
b = 9.7323 (11) Åθ = 2.8–34.4°
c = 11.1884 (13) ŵ = 8.23 mm1
α = 79.157 (2)°T = 100 K
β = 71.178 (3)°Plate, yellow
γ = 67.325 (2)°0.45 × 0.21 × 0.12 mm
V = 765.87 (15) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4449 independent reflections
Radiation source: fine-focus sealed tube3983 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 1111
Tmin = 0.135, Tmax = 0.378k = 1313
9814 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
4449 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 1.94 e Å3
0 restraintsΔρmin = 1.96 e Å3
Crystal data top
[ZnI2(C12H9BrN2)]γ = 67.325 (2)°
Mr = 580.29V = 765.87 (15) Å3
Triclinic, P1Z = 2
a = 8.0749 (9) ÅMo Kα radiation
b = 9.7323 (11) ŵ = 8.23 mm1
c = 11.1884 (13) ÅT = 100 K
α = 79.157 (2)°0.45 × 0.21 × 0.12 mm
β = 71.178 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4449 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
3983 reflections with I > 2σ(I)
Tmin = 0.135, Tmax = 0.378Rint = 0.040
9814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.01Δρmax = 1.94 e Å3
4449 reflectionsΔρmin = 1.96 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.28834 (3)0.85145 (2)0.60583 (2)0.01640 (7)
I20.16700 (3)0.84434 (2)0.72880 (2)0.01874 (7)
Br10.51281 (5)0.79618 (4)0.04600 (3)0.02005 (9)
Zn10.02685 (5)0.70420 (4)0.64300 (4)0.01456 (9)
N10.0641 (4)0.4960 (3)0.7379 (3)0.0178 (6)
N20.2315 (4)0.5720 (3)0.4997 (3)0.0154 (5)
C10.2115 (5)0.3877 (4)0.6720 (3)0.0159 (6)
C20.2711 (5)0.2407 (4)0.7206 (3)0.0195 (7)
H2A0.37540.16710.67220.023*
C30.1746 (6)0.2034 (4)0.8421 (4)0.0234 (7)
H3A0.21300.10390.87860.028*
C40.0213 (5)0.3136 (4)0.9090 (4)0.0240 (8)
H4A0.04830.29000.99130.029*
C50.0296 (5)0.4594 (4)0.8543 (3)0.0225 (7)
H5A0.13350.53490.90100.027*
C60.3009 (5)0.4359 (4)0.5426 (3)0.0158 (6)
H6A0.40840.36750.49130.019*
C70.3033 (4)0.6193 (4)0.3715 (3)0.0147 (6)
C80.4198 (5)0.5200 (4)0.2790 (3)0.0169 (6)
H8A0.45510.41550.30050.020*
C90.4848 (5)0.5734 (4)0.1550 (3)0.0185 (7)
H9A0.56710.50610.09200.022*
C100.4275 (5)0.7263 (4)0.1250 (3)0.0165 (6)
C110.3091 (5)0.8267 (4)0.2146 (3)0.0204 (7)
H11A0.27100.93110.19210.024*
C120.2468 (5)0.7728 (4)0.3380 (3)0.0195 (7)
H12A0.16490.84070.40060.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01523 (11)0.01337 (11)0.02111 (12)0.00533 (8)0.00547 (8)0.00085 (8)
I20.01755 (12)0.01407 (12)0.02641 (13)0.00646 (9)0.00745 (9)0.00117 (9)
Br10.02369 (18)0.01625 (17)0.01622 (17)0.00571 (14)0.00288 (13)0.00060 (13)
Zn10.01415 (18)0.01008 (17)0.01727 (19)0.00385 (14)0.00195 (14)0.00109 (14)
N10.0177 (13)0.0139 (13)0.0216 (14)0.0076 (11)0.0031 (11)0.0002 (11)
N20.0181 (13)0.0132 (13)0.0162 (13)0.0079 (11)0.0027 (10)0.0022 (10)
C10.0166 (14)0.0140 (15)0.0186 (15)0.0073 (12)0.0050 (12)0.0003 (12)
C20.0230 (16)0.0138 (15)0.0218 (16)0.0058 (13)0.0077 (13)0.0001 (13)
C30.0318 (19)0.0139 (16)0.0265 (18)0.0090 (14)0.0136 (15)0.0058 (14)
C40.0275 (19)0.0201 (17)0.0220 (17)0.0116 (15)0.0035 (14)0.0056 (14)
C50.0230 (17)0.0223 (18)0.0200 (17)0.0092 (14)0.0034 (13)0.0023 (14)
C60.0156 (14)0.0111 (14)0.0197 (16)0.0043 (12)0.0038 (12)0.0016 (12)
C70.0148 (14)0.0123 (14)0.0170 (15)0.0053 (12)0.0039 (11)0.0008 (12)
C80.0194 (15)0.0097 (14)0.0201 (16)0.0041 (12)0.0035 (12)0.0032 (12)
C90.0189 (15)0.0138 (15)0.0199 (16)0.0040 (13)0.0020 (12)0.0040 (12)
C100.0167 (14)0.0178 (16)0.0155 (15)0.0080 (13)0.0032 (12)0.0001 (12)
C110.0248 (17)0.0126 (15)0.0206 (17)0.0055 (13)0.0031 (13)0.0018 (13)
C120.0210 (16)0.0089 (14)0.0213 (17)0.0034 (12)0.0013 (13)0.0013 (12)
Geometric parameters (Å, º) top
I1—Zn12.5201 (5)C3—H3A0.9500
I2—Zn12.5389 (5)C4—C51.394 (5)
Zn1—N12.062 (3)C4—H4A0.9500
Zn1—N22.094 (3)C5—H5A0.9500
Br1—C101.902 (3)C6—H6A0.9500
Zn1—N12.062 (3)C7—C81.391 (5)
Zn1—N22.094 (3)C7—C121.398 (5)
N1—C51.339 (4)C8—C91.392 (5)
N1—C11.353 (4)C8—H8A0.9500
N2—C61.289 (4)C9—C101.387 (5)
N2—C71.424 (4)C9—H9A0.9500
C1—C21.385 (5)C10—C111.381 (5)
C1—C61.473 (5)C11—C121.385 (5)
C2—C31.391 (5)C11—H11A0.9500
C2—H2A0.9500C12—H12A0.9500
C3—C41.387 (6)
N1—Zn1—N280.30 (11)N1—C5—C4121.8 (3)
N1—Zn1—I1117.81 (8)N1—C5—H5A119.1
N2—Zn1—I1117.60 (8)C4—C5—H5A119.1
N1—Zn1—I2109.45 (8)N2—C6—C1119.2 (3)
N2—Zn1—I2110.18 (8)N2—C6—H6A120.4
I1—Zn1—I2116.210 (17)C1—C6—H6A120.4
C5—N1—C1118.8 (3)C8—C7—C12119.5 (3)
C5—N1—Zn1128.7 (3)C8—C7—N2123.0 (3)
C1—N1—Zn1112.4 (2)C12—C7—N2117.5 (3)
C6—N2—C7120.8 (3)C7—C8—C9120.2 (3)
C6—N2—Zn1111.5 (2)C7—C8—H8A119.9
C7—N2—Zn1127.5 (2)C9—C8—H8A119.9
N1—C1—C2122.7 (3)C10—C9—C8118.9 (3)
N1—C1—C6115.2 (3)C10—C9—H9A120.5
C2—C1—C6122.1 (3)C8—C9—H9A120.5
C1—C2—C3118.4 (3)C11—C10—C9121.8 (3)
C1—C2—H2A120.8C11—C10—Br1120.0 (3)
C3—C2—H2A120.8C9—C10—Br1118.1 (3)
C4—C3—C2119.0 (3)C10—C11—C12118.9 (3)
C4—C3—H3A120.5C10—C11—H11A120.6
C2—C3—H3A120.5C12—C11—H11A120.6
C3—C4—C5119.3 (3)C11—C12—C7120.6 (3)
C3—C4—H4A120.3C11—C12—H12A119.7
C5—C4—H4A120.3C7—C12—H12A119.7
N2—Zn1—N1—C5175.2 (3)Zn1—N1—C5—C4175.4 (3)
I1—Zn1—N1—C559.0 (3)C3—C4—C5—N10.9 (6)
I2—Zn1—N1—C576.7 (3)C7—N2—C6—C1174.2 (3)
N2—Zn1—N1—C19.0 (2)Zn1—N2—C6—C110.1 (4)
I1—Zn1—N1—C1125.1 (2)N1—C1—C6—N22.6 (5)
I2—Zn1—N1—C199.1 (2)C2—C1—C6—N2175.4 (3)
N1—Zn1—N2—C610.3 (2)C6—N2—C7—C814.4 (5)
I1—Zn1—N2—C6126.7 (2)Zn1—N2—C7—C8170.5 (3)
I2—Zn1—N2—C697.0 (2)C6—N2—C7—C12168.0 (3)
N1—Zn1—N2—C7174.3 (3)Zn1—N2—C7—C127.0 (4)
I1—Zn1—N2—C757.9 (3)C12—C7—C8—C92.2 (5)
I2—Zn1—N2—C778.4 (3)N2—C7—C8—C9179.7 (3)
C5—N1—C1—C20.8 (5)C7—C8—C9—C101.7 (5)
Zn1—N1—C1—C2175.5 (3)C8—C9—C10—C110.5 (5)
C5—N1—C1—C6177.2 (3)C8—C9—C10—Br1178.3 (3)
Zn1—N1—C1—C66.5 (4)C9—C10—C11—C120.3 (6)
N1—C1—C2—C30.2 (5)Br1—C10—C11—C12179.0 (3)
C6—C1—C2—C3177.6 (3)C10—C11—C12—C70.2 (6)
C1—C2—C3—C40.9 (6)C8—C7—C12—C111.5 (5)
C2—C3—C4—C51.5 (6)N2—C7—C12—C11179.1 (3)
C1—N1—C5—C40.2 (5)

Experimental details

Crystal data
Chemical formula[ZnI2(C12H9BrN2)]
Mr580.29
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.0749 (9), 9.7323 (11), 11.1884 (13)
α, β, γ (°)79.157 (2), 71.178 (3), 67.325 (2)
V3)765.87 (15)
Z2
Radiation typeMo Kα
µ (mm1)8.23
Crystal size (mm)0.45 × 0.21 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.135, 0.378
No. of measured, independent and
observed [I > 2σ(I)] reflections
9814, 4449, 3983
Rint0.040
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.084, 1.01
No. of reflections4449
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.94, 1.96

Computer programs: APEX2 (Bruker, 2005), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
I1—Zn12.5201 (5)Zn1—N22.094 (3)
I2—Zn12.5389 (5)Zn1—N12.062 (3)
Zn1—N12.062 (3)Zn1—N22.094 (3)
N1—Zn1—N280.30 (11)N1—Zn1—I2109.45 (8)
N1—Zn1—I1117.81 (8)N2—Zn1—I2110.18 (8)
N2—Zn1—I1117.60 (8)I1—Zn1—I2116.210 (17)
 

Acknowledgements

SD acknowledges the Alzahra University Research Council for partial support of this work.

References

First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDehghanpour, S., Mahmoudi, A., Khalaj, M. & Salmanpour, S. (2007). Acta Cryst. E63, m2840.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDehghanpour, S., Mahmoudi, A., Khalaj, M., Salmanpour, S. & Adib, M. (2007). Acta Cryst. E63, m2841.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, S. H., Kim, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m511.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWriedt, M., Jess, I. & Näther, C. (2008). Acta Cryst. E64, m11.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds