organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Chloro-5-nitro­benzyl­­idene)-3-hy­droxy­benzohydrazide methanol solvate

aDepartment of Chemistry, Kaili College, Kaili Guizhou 556000, People's Republic of China
*Correspondence e-mail: zhou82zhi@126.com

(Received 13 June 2008; accepted 27 June 2008; online 5 July 2008)

In the title compound, C14H10ClN3O4·CH3OH, the dihedral angle between the two benzene rings is 33.9 (2)°. In the crystal structure, the methanol solvent mol­ecules are linked to the Schiff base mol­ecules through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds. Mol­ecules are further linked through inter­molecular O—H⋯O and O—H⋯N hydrogen bonds, forming chains running along the b axis.

Related literature

For related structures, see: Zhou & Tang (2007[Zhou, Z. & Tang, R.-R. (2007). Acta Cryst. E63, m2960.]); Zhou & Xiao (2007[Zhou, Z. & Xiao, Z.-H. (2007). Acta Cryst. E63, m2012.]). For related literature, see: Ali et al. (2007[Ali, H. M., Zuraini, K., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1729-o1730.]); Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Narayana, B., Sunil, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3652.]); He (2008[He, L. (2008). Acta Cryst. E64, o82.]); Jing & Yu (2007[Jing, Z.-L. & Yu, M. (2007). Acta Cryst. E63, o509-o510.]); Nie (2008[Nie, Y. (2008). Acta Cryst. E64, o471.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10ClN3O4·CH4O

  • Mr = 351.74

  • Monoclinic, P 21 /c

  • a = 7.716 (3) Å

  • b = 11.945 (2) Å

  • c = 17.650 (3) Å

  • β = 99.886 (2)°

  • V = 1602.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 (2) K

  • 0.27 × 0.23 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.943

  • 12656 measured reflections

  • 3316 independent reflections

  • 2396 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.121

  • S = 1.01

  • 3316 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3i 0.82 1.91 2.7237 (19) 169
O4—H4⋯N2i 0.82 2.62 3.118 (2) 120
O5—H5⋯O3i 0.82 2.00 2.817 (2) 175
N3—H3B⋯O5 0.81 (3) 2.05 (3) 2.854 (2) 173 (3)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, we have reported two metal complexes with Schiff base ligands (Zhou & Tang, 2007; Zhou & Xiao, 2007). We report herein the crystal structure of the title Schiff base compound (Fig. 1).

The title compound consists of a Schiff base molecule and a methanol molecule of crystallization. The dihedral angle between the two benzene rings is 33.9 (2)°. All bond lengths are comparable to those found in similar compounds (Ali et al., 2007; Nie, 2008; He, 2008; Butcher et al., 2007; Jing & Yu, 2007). In the crystal structure, the methanol molecules are linked to the Schiff base molecules through intermolecular N–H···O and O–H···O hydrogen bonds (Table 1). Molecules are further linked through intermolecular O—H···O and O—H···N hydrogen bonds to form chains running along the b axis (Fig. 2).

Related literature top

For related structures, see: Zhou & Tang (2007); Zhou & Xiao (2007). For related literature, see: Ali et al. (2007); Butcher et al. (2007); He (2008); Jing & Yu (2007); Nie (2008).

Experimental top

2-Chloro-5-nitrobenzaldehyde (1.0 mmol, 167.1 mg) and 3-hydroxybenzohydrazide (1.0 mmol, 152.1 mg) were dissolved in methanol (30 ml). The mixture was stirred at reflux for 30 min to give a colourless solution. After keeping the solution in air for a few days, colourless block-shaped crystals were formed.

Refinement top

H3B was located in a difference Fourier map and refined isotropically, with Uiso(H) fixed at 0.08 Å2. Other H atoms were positioned geometrically and refined using a riding model with O–H = 0.92 Å, C–H = 0.93-0.96 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C, O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title copound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
N'-(2-Chloro-5-nitrobenzylidene)-3-hydroxybenzohydrazide methanol solvate top
Crystal data top
C14H10ClN3O4·CH4OF(000) = 728
Mr = 351.74Dx = 1.458 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2947 reflections
a = 7.716 (3) Åθ = 2.3–24.5°
b = 11.945 (2) ŵ = 0.27 mm1
c = 17.650 (3) ÅT = 298 K
β = 99.886 (2)°Block, colourless
V = 1602.6 (7) Å30.27 × 0.23 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3316 independent reflections
Radiation source: fine-focus sealed tube2396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.931, Tmax = 0.943k = 1414
12656 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.2859P]
where P = (Fo2 + 2Fc2)/3
3316 reflections(Δ/σ)max < 0.001
223 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H10ClN3O4·CH4OV = 1602.6 (7) Å3
Mr = 351.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.716 (3) ŵ = 0.27 mm1
b = 11.945 (2) ÅT = 298 K
c = 17.650 (3) Å0.27 × 0.23 × 0.22 mm
β = 99.886 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3316 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2396 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.943Rint = 0.034
12656 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.18 e Å3
3316 reflectionsΔρmin = 0.22 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.27705 (9)0.68944 (5)0.42450 (4)0.0774 (2)
O10.1188 (3)1.16001 (18)0.30340 (10)0.0978 (7)
O20.0033 (3)1.21390 (16)0.41618 (12)0.0859 (6)
O30.4707 (2)1.09327 (11)0.70885 (8)0.0623 (4)
O40.6995 (2)0.71117 (11)0.91382 (8)0.0607 (4)
H40.64790.66900.88080.091*
O50.6192 (3)0.69826 (13)0.66034 (11)0.0897 (6)
H50.59070.66450.69680.135*
N10.0240 (3)1.14400 (19)0.36561 (12)0.0652 (5)
N20.3857 (2)0.95587 (12)0.58923 (8)0.0428 (4)
N30.4964 (2)0.92397 (13)0.65533 (9)0.0424 (4)
C10.2405 (2)0.90699 (16)0.46380 (10)0.0439 (5)
C20.1934 (3)0.82357 (18)0.40857 (12)0.0534 (5)
C30.0788 (3)0.8448 (2)0.34054 (13)0.0684 (7)
H30.05020.78800.30450.082*
C40.0082 (3)0.9485 (2)0.32639 (12)0.0663 (7)
H4A0.06900.96330.28100.080*
C50.0531 (3)1.03136 (19)0.38052 (11)0.0533 (5)
C60.1661 (3)1.01296 (17)0.44857 (10)0.0468 (5)
H60.19271.07050.48410.056*
C70.3601 (3)0.88397 (16)0.53602 (11)0.0460 (5)
H70.41790.81540.54280.055*
C80.5280 (2)0.99647 (15)0.71415 (10)0.0429 (4)
C90.6354 (2)0.95567 (15)0.78653 (10)0.0409 (4)
C100.6158 (2)0.84831 (15)0.81342 (10)0.0414 (4)
H100.53660.79920.78490.050*
C110.7141 (3)0.81385 (16)0.88285 (11)0.0451 (5)
C120.8325 (3)0.88781 (18)0.92424 (11)0.0536 (5)
H120.90030.86520.97040.064*
C130.8499 (3)0.99430 (19)0.89738 (12)0.0591 (6)
H130.92951.04320.92590.071*
C140.7518 (3)1.03021 (17)0.82898 (11)0.0511 (5)
H140.76331.10290.81160.061*
C150.6536 (4)0.6218 (2)0.60542 (17)0.0899 (9)
H15A0.67690.66130.56090.135*
H15B0.55350.57390.59110.135*
H15C0.75420.57750.62630.135*
H3B0.538 (3)0.862 (2)0.6593 (14)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0721 (4)0.0661 (4)0.0918 (5)0.0006 (3)0.0077 (3)0.0362 (3)
O10.1037 (15)0.1191 (16)0.0612 (11)0.0065 (12)0.0124 (10)0.0357 (11)
O20.0977 (14)0.0643 (11)0.0857 (13)0.0020 (10)0.0123 (11)0.0069 (10)
O30.0989 (12)0.0348 (8)0.0464 (8)0.0086 (7)0.0068 (8)0.0028 (6)
O40.0881 (12)0.0414 (8)0.0441 (8)0.0011 (7)0.0130 (7)0.0061 (6)
O50.1570 (19)0.0489 (10)0.0750 (12)0.0195 (10)0.0527 (12)0.0041 (8)
N10.0607 (12)0.0783 (14)0.0543 (12)0.0043 (10)0.0038 (10)0.0231 (11)
N20.0519 (10)0.0387 (8)0.0355 (8)0.0009 (7)0.0013 (7)0.0009 (7)
N30.0523 (10)0.0363 (8)0.0357 (8)0.0010 (7)0.0005 (7)0.0004 (7)
C10.0437 (11)0.0531 (12)0.0356 (10)0.0079 (8)0.0087 (8)0.0059 (8)
C20.0507 (12)0.0624 (13)0.0489 (12)0.0078 (10)0.0132 (10)0.0157 (10)
C30.0644 (15)0.0928 (19)0.0463 (13)0.0128 (14)0.0050 (11)0.0305 (13)
C40.0610 (14)0.097 (2)0.0378 (11)0.0051 (13)0.0000 (10)0.0035 (12)
C50.0506 (12)0.0699 (14)0.0396 (11)0.0102 (10)0.0080 (9)0.0053 (10)
C60.0508 (11)0.0549 (12)0.0343 (10)0.0117 (9)0.0061 (8)0.0001 (8)
C70.0541 (12)0.0415 (10)0.0413 (10)0.0005 (9)0.0054 (9)0.0035 (8)
C80.0526 (11)0.0343 (10)0.0403 (10)0.0041 (8)0.0041 (9)0.0002 (8)
C90.0476 (11)0.0382 (10)0.0359 (9)0.0012 (8)0.0041 (8)0.0030 (7)
C100.0477 (11)0.0377 (10)0.0359 (10)0.0013 (8)0.0012 (8)0.0065 (8)
C110.0540 (12)0.0415 (11)0.0376 (10)0.0039 (8)0.0020 (9)0.0016 (8)
C120.0553 (13)0.0621 (13)0.0379 (10)0.0032 (10)0.0075 (9)0.0019 (9)
C130.0626 (14)0.0634 (14)0.0462 (12)0.0232 (11)0.0049 (10)0.0094 (10)
C140.0627 (13)0.0434 (11)0.0449 (11)0.0141 (9)0.0026 (10)0.0020 (9)
C150.109 (2)0.0755 (18)0.095 (2)0.0083 (16)0.0456 (18)0.0195 (16)
Geometric parameters (Å, º) top
Cl1—C21.732 (2)C4—C51.378 (3)
O1—N11.225 (2)C4—H4A0.9300
O2—N11.214 (3)C5—C61.375 (3)
O3—C81.236 (2)C6—H60.9300
O4—C111.355 (2)C7—H70.9300
O4—H40.8200C8—C91.481 (2)
O5—C151.390 (3)C9—C101.385 (3)
O5—H50.8200C9—C141.389 (3)
N1—C51.477 (3)C10—C111.388 (3)
N2—C71.263 (2)C10—H100.9300
N2—N31.376 (2)C11—C121.385 (3)
N3—C81.342 (2)C12—C131.372 (3)
N3—H3B0.81 (3)C12—H120.9300
C1—C61.397 (3)C13—C141.379 (3)
C1—C21.398 (3)C13—H130.9300
C1—C71.466 (3)C14—H140.9300
C2—C31.387 (3)C15—H15A0.9600
C3—C41.358 (4)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C11—O4—H4109.5C1—C7—H7119.5
C15—O5—H5109.5O3—C8—N3122.02 (17)
O2—N1—O1123.6 (2)O3—C8—C9120.89 (16)
O2—N1—C5118.83 (18)N3—C8—C9117.09 (16)
O1—N1—C5117.5 (2)C10—C9—C14120.50 (17)
C7—N2—N3115.93 (16)C10—C9—C8121.50 (16)
C8—N3—N2118.75 (15)C14—C9—C8117.94 (17)
C8—N3—H3B120.6 (18)C9—C10—C11120.11 (17)
N2—N3—H3B120.6 (18)C9—C10—H10119.9
C6—C1—C2117.57 (18)C11—C10—H10119.9
C6—C1—C7120.92 (17)O4—C11—C12117.23 (17)
C2—C1—C7121.49 (18)O4—C11—C10123.60 (17)
C3—C2—C1121.6 (2)C12—C11—C10119.16 (18)
C3—C2—Cl1118.32 (17)C13—C12—C11120.26 (18)
C1—C2—Cl1120.09 (16)C13—C12—H12119.9
C4—C3—C2120.1 (2)C11—C12—H12119.9
C4—C3—H3119.9C12—C13—C14121.29 (18)
C2—C3—H3119.9C12—C13—H13119.4
C3—C4—C5118.8 (2)C14—C13—H13119.4
C3—C4—H4A120.6C13—C14—C9118.66 (19)
C5—C4—H4A120.6C13—C14—H14120.7
C6—C5—C4122.5 (2)C9—C14—H14120.7
C6—C5—N1118.48 (19)O5—C15—H15A109.5
C4—C5—N1119.0 (2)O5—C15—H15B109.5
C5—C6—C1119.39 (19)H15A—C15—H15B109.5
C5—C6—H6120.3O5—C15—H15C109.5
C1—C6—H6120.3H15A—C15—H15C109.5
N2—C7—C1120.94 (18)H15B—C15—H15C109.5
N2—C7—H7119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.821.912.7237 (19)169
O4—H4···N2i0.822.623.118 (2)120
O5—H5···O3i0.822.002.817 (2)175
N3—H3B···O50.81 (3)2.05 (3)2.854 (2)173 (3)
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H10ClN3O4·CH4O
Mr351.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.716 (3), 11.945 (2), 17.650 (3)
β (°) 99.886 (2)
V3)1602.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.27 × 0.23 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.931, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
12656, 3316, 2396
Rint0.034
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.121, 1.01
No. of reflections3316
No. of parameters223
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3i0.821.912.7237 (19)169.4
O4—H4···N2i0.822.623.118 (2)120.4
O5—H5···O3i0.822.002.817 (2)175.2
N3—H3B···O50.81 (3)2.05 (3)2.854 (2)173 (3)
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

The author thanks Kaili College for financial support.

References

First citationAli, H. M., Zuraini, K., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1729–o1730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Jasinski, J. P., Narayana, B., Sunil, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, L. (2008). Acta Cryst. E64, o82.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJing, Z.-L. & Yu, M. (2007). Acta Cryst. E63, o509–o510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNie, Y. (2008). Acta Cryst. E64, o471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, Z. & Tang, R.-R. (2007). Acta Cryst. E63, m2960.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Z. & Xiao, Z.-H. (2007). Acta Cryst. E63, m2012.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds