organic compounds
N-(2-Chlorobenzoyl)-N′-(3-pyridyl)thiourea
aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and bDepartment of Biochemical Engineering, Anhui University of Technology and Science, Wuhu 241000, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn
In the molecule of the title compound, C13H10ClN3OS, the dihedral angles between the plane through the thiourea group and the pyridine and benzene rings are 53.08 (3) and 87.12 (3)°, respectively. The molecules are linked by intermolecular N—H⋯N hydrogen-bonding interactions to form a supramolecular chain structure along the a axis. An intramolecular N—H⋯O hydrogen bond is also present.
Related literature
For related literature, see: Campo et al. (2002); Dong et al. (2006, 2008); Foss et al. (2004); Guillon et al. (1996); Koch (2001); Krepps et al. (2001); Su et al. (2004, 2006); Teoh et al. (1999); Venkatachalam et al. (2004); West et al. (2000); Xian et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808019922/rz2227sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808019922/rz2227Isup2.hkl
N-(o-Chloro)benzoyl-N'-(3-pyridyl)thiourea was synthesized according the method reported in the literature (Dong et al., 2008). o-Chlorobenzoyl chloride (3.61 g, 0.02 mol) was reacted with ammonium thiocyanate (2.28 g, 0.03 mol) in CH2Cl2 (25 ml) under solid-liquid phase transfer catalysis, using 3% polyethylene glycol-400 (0.36 g) as catalyst, to give the corresponding benzoyl isothiocyanate, which was reacted with 3-aminopyridine (1.72 g, 0.02 mol). The title compound precipitated immediately. The product was filtered, washed with water and CH2Cl2 and dried. Colourless needle-shaped single crystals were obtained by slow evaporation of an acetone solution after several weeks at room temperature. M.p. 442 - 444 K. Anal. Calcd. for C13H10ClN3OS: C, 53.52; H, 3.45; N, 14.40. Found: C, 53.28; H, 3.48; N, 14.15%.
H atoms were treated as riding atoms with C—H = 0.93 Å, N—H = 0.86 Å, and Uiso(H) = 1.2 Ueq(C, N).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C13H10ClN3OS | Z = 2 |
Mr = 291.75 | F(000) = 300 |
Triclinic, P1 | Dx = 1.444 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.421 (3) Å | Cell parameters from 1514 reflections |
b = 9.282 (4) Å | θ = 2.5–26.6° |
c = 10.512 (4) Å | µ = 0.43 mm−1 |
α = 98.336 (4)° | T = 298 K |
β = 110.797 (4)° | Needle, colourless |
γ = 112.532 (4)° | 0.32 × 0.11 × 0.07 mm |
V = 670.9 (5) Å3 |
Bruker SMART 1000 CCD area-detector diffractometer | 2319 independent reflections |
Radiation source: fine-focus sealed tube | 1734 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→9 |
Tmin = 0.874, Tmax = 0.972 | k = −11→9 |
3504 measured reflections | l = −12→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.044P)2 + 0.2146P] where P = (Fo2 + 2Fc2)/3 |
2319 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C13H10ClN3OS | γ = 112.532 (4)° |
Mr = 291.75 | V = 670.9 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.421 (3) Å | Mo Kα radiation |
b = 9.282 (4) Å | µ = 0.43 mm−1 |
c = 10.512 (4) Å | T = 298 K |
α = 98.336 (4)° | 0.32 × 0.11 × 0.07 mm |
β = 110.797 (4)° |
Bruker SMART 1000 CCD area-detector diffractometer | 2319 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1734 reflections with I > 2σ(I) |
Tmin = 0.874, Tmax = 0.972 | Rint = 0.019 |
3504 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.20 e Å−3 |
2319 reflections | Δρmin = −0.18 e Å−3 |
172 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.41414 (14) | 0.64074 (11) | 0.50918 (8) | 0.0781 (3) | |
N1 | 0.4306 (3) | 0.5361 (2) | 0.1841 (2) | 0.0397 (5) | |
H1 | 0.3077 | 0.4966 | 0.1477 | 0.048* | |
N2 | 0.6871 (3) | 0.4903 (2) | 0.2029 (2) | 0.0416 (5) | |
H2 | 0.7561 | 0.5927 | 0.2548 | 0.050* | |
N3 | 1.0366 (3) | 0.3871 (2) | 0.1394 (2) | 0.0481 (5) | |
O1 | 0.7112 (3) | 0.7734 (2) | 0.3311 (2) | 0.0630 (5) | |
S1 | 0.33789 (9) | 0.24252 (8) | 0.02568 (7) | 0.0500 (2) | |
C1 | 0.4967 (3) | 0.4294 (3) | 0.1432 (2) | 0.0370 (5) | |
C2 | 0.5364 (4) | 0.6956 (3) | 0.2748 (3) | 0.0422 (6) | |
C3 | 0.4139 (3) | 0.7708 (3) | 0.2962 (2) | 0.0400 (5) | |
C4 | 0.3540 (4) | 0.7557 (3) | 0.4027 (3) | 0.0476 (6) | |
C5 | 0.2449 (4) | 0.8281 (3) | 0.4233 (3) | 0.0560 (7) | |
H5 | 0.2062 | 0.8177 | 0.4955 | 0.067* | |
C6 | 0.1944 (4) | 0.9154 (3) | 0.3359 (3) | 0.0613 (8) | |
H6 | 0.1211 | 0.9644 | 0.3490 | 0.074* | |
C7 | 0.2513 (4) | 0.9307 (3) | 0.2296 (3) | 0.0593 (7) | |
H7 | 0.2157 | 0.9895 | 0.1705 | 0.071* | |
C8 | 0.3611 (4) | 0.8595 (3) | 0.2093 (3) | 0.0495 (6) | |
H8 | 0.3997 | 0.8711 | 0.1371 | 0.059* | |
C9 | 0.9299 (3) | 0.4610 (3) | 0.1477 (2) | 0.0411 (6) | |
H9 | 0.9551 | 0.5586 | 0.1259 | 0.049* | |
C10 | 0.7848 (3) | 0.3985 (3) | 0.1872 (2) | 0.0380 (5) | |
C11 | 0.7442 (4) | 0.2524 (3) | 0.2178 (3) | 0.0481 (6) | |
H11 | 0.6456 | 0.2070 | 0.2436 | 0.058* | |
C12 | 0.8523 (4) | 0.1757 (3) | 0.2093 (3) | 0.0542 (7) | |
H12 | 0.8291 | 0.0776 | 0.2300 | 0.065* | |
C13 | 0.9953 (4) | 0.2463 (3) | 0.1697 (3) | 0.0537 (7) | |
H13 | 1.0674 | 0.1930 | 0.1636 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.1271 (8) | 0.0975 (6) | 0.0704 (5) | 0.0861 (6) | 0.0617 (5) | 0.0496 (5) |
N1 | 0.0341 (10) | 0.0395 (11) | 0.0488 (11) | 0.0192 (9) | 0.0225 (9) | 0.0076 (9) |
N2 | 0.0372 (11) | 0.0368 (10) | 0.0569 (12) | 0.0195 (9) | 0.0271 (10) | 0.0101 (9) |
N3 | 0.0439 (12) | 0.0496 (12) | 0.0650 (14) | 0.0268 (10) | 0.0339 (11) | 0.0184 (11) |
O1 | 0.0406 (11) | 0.0539 (11) | 0.0758 (13) | 0.0192 (9) | 0.0209 (10) | −0.0069 (10) |
S1 | 0.0487 (4) | 0.0416 (4) | 0.0571 (4) | 0.0206 (3) | 0.0259 (3) | 0.0051 (3) |
C1 | 0.0437 (14) | 0.0408 (13) | 0.0405 (13) | 0.0244 (11) | 0.0273 (11) | 0.0160 (10) |
C2 | 0.0426 (15) | 0.0419 (13) | 0.0447 (14) | 0.0219 (12) | 0.0227 (12) | 0.0074 (11) |
C3 | 0.0408 (13) | 0.0356 (12) | 0.0459 (14) | 0.0206 (11) | 0.0213 (11) | 0.0071 (11) |
C4 | 0.0624 (17) | 0.0491 (14) | 0.0487 (14) | 0.0376 (13) | 0.0297 (13) | 0.0177 (12) |
C5 | 0.0712 (19) | 0.0653 (17) | 0.0544 (16) | 0.0448 (16) | 0.0386 (15) | 0.0170 (14) |
C6 | 0.0686 (19) | 0.0596 (17) | 0.0696 (19) | 0.0464 (16) | 0.0307 (16) | 0.0129 (15) |
C7 | 0.0712 (19) | 0.0516 (16) | 0.0672 (18) | 0.0404 (15) | 0.0291 (16) | 0.0236 (14) |
C8 | 0.0577 (16) | 0.0438 (14) | 0.0540 (15) | 0.0264 (13) | 0.0293 (13) | 0.0168 (12) |
C9 | 0.0374 (13) | 0.0396 (13) | 0.0515 (14) | 0.0198 (11) | 0.0238 (12) | 0.0142 (11) |
C10 | 0.0388 (13) | 0.0410 (13) | 0.0432 (13) | 0.0231 (11) | 0.0236 (11) | 0.0120 (10) |
C11 | 0.0507 (15) | 0.0512 (15) | 0.0599 (16) | 0.0269 (13) | 0.0380 (13) | 0.0222 (13) |
C12 | 0.0630 (17) | 0.0487 (15) | 0.0750 (18) | 0.0351 (14) | 0.0422 (15) | 0.0300 (14) |
C13 | 0.0556 (16) | 0.0537 (16) | 0.0732 (18) | 0.0373 (14) | 0.0378 (15) | 0.0220 (14) |
Cl1—C4 | 1.734 (2) | C5—C6 | 1.372 (4) |
N1—C2 | 1.368 (3) | C5—H5 | 0.9300 |
N1—C1 | 1.394 (3) | C6—C7 | 1.369 (4) |
N1—H1 | 0.8600 | C6—H6 | 0.9300 |
N2—C1 | 1.331 (3) | C7—C8 | 1.380 (4) |
N2—C10 | 1.422 (3) | C7—H7 | 0.9300 |
N2—H2 | 0.8600 | C8—H8 | 0.9300 |
N3—C13 | 1.335 (3) | C9—C10 | 1.375 (3) |
N3—C9 | 1.340 (3) | C9—H9 | 0.9300 |
O1—C2 | 1.217 (3) | C10—C11 | 1.381 (3) |
S1—C1 | 1.659 (2) | C11—C12 | 1.371 (3) |
C2—C3 | 1.508 (3) | C11—H11 | 0.9300 |
C3—C4 | 1.385 (3) | C12—C13 | 1.373 (3) |
C3—C8 | 1.386 (3) | C12—H12 | 0.9300 |
C4—C5 | 1.384 (3) | C13—H13 | 0.9300 |
C2—N1—C1 | 128.3 (2) | C7—C6—H6 | 119.8 |
C2—N1—H1 | 115.9 | C5—C6—H6 | 119.8 |
C1—N1—H1 | 115.9 | C6—C7—C8 | 120.5 (2) |
C1—N2—C10 | 124.83 (19) | C6—C7—H7 | 119.7 |
C1—N2—H2 | 117.6 | C8—C7—H7 | 119.7 |
C10—N2—H2 | 117.6 | C7—C8—C3 | 120.1 (2) |
C13—N3—C9 | 117.2 (2) | C7—C8—H8 | 119.9 |
N2—C1—N1 | 115.4 (2) | C3—C8—H8 | 119.9 |
N2—C1—S1 | 125.54 (17) | N3—C9—C10 | 122.6 (2) |
N1—C1—S1 | 119.02 (17) | N3—C9—H9 | 118.7 |
O1—C2—N1 | 124.8 (2) | C10—C9—H9 | 118.7 |
O1—C2—C3 | 122.1 (2) | C9—C10—C11 | 119.2 (2) |
N1—C2—C3 | 113.1 (2) | C9—C10—N2 | 119.10 (19) |
C4—C3—C8 | 118.6 (2) | C11—C10—N2 | 121.6 (2) |
C4—C3—C2 | 121.6 (2) | C12—C11—C10 | 118.6 (2) |
C8—C3—C2 | 119.8 (2) | C12—C11—H11 | 120.7 |
C5—C4—C3 | 121.1 (2) | C10—C11—H11 | 120.7 |
C5—C4—Cl1 | 119.9 (2) | C11—C12—C13 | 118.8 (2) |
C3—C4—Cl1 | 118.97 (18) | C11—C12—H12 | 120.6 |
C6—C5—C4 | 119.2 (2) | C13—C12—H12 | 120.6 |
C6—C5—H5 | 120.4 | N3—C13—C12 | 123.6 (2) |
C4—C5—H5 | 120.4 | N3—C13—H13 | 118.2 |
C7—C6—C5 | 120.4 (2) | C12—C13—H13 | 118.2 |
C10—N2—C1—N1 | 173.77 (19) | C4—C5—C6—C7 | 0.0 (4) |
C10—N2—C1—S1 | −7.1 (3) | C5—C6—C7—C8 | −0.4 (4) |
C2—N1—C1—N2 | 1.6 (3) | C6—C7—C8—C3 | 0.4 (4) |
C2—N1—C1—S1 | −177.58 (18) | C4—C3—C8—C7 | 0.0 (4) |
C1—N1—C2—O1 | 3.2 (4) | C2—C3—C8—C7 | −179.1 (2) |
C1—N1—C2—C3 | −178.6 (2) | C13—N3—C9—C10 | 0.8 (4) |
O1—C2—C3—C4 | −93.6 (3) | N3—C9—C10—C11 | −1.0 (4) |
N1—C2—C3—C4 | 88.1 (3) | N3—C9—C10—N2 | 175.7 (2) |
O1—C2—C3—C8 | 85.4 (3) | C1—N2—C10—C9 | 129.9 (2) |
N1—C2—C3—C8 | −92.8 (3) | C1—N2—C10—C11 | −53.4 (3) |
C8—C3—C4—C5 | −0.4 (4) | C9—C10—C11—C12 | 0.8 (4) |
C2—C3—C4—C5 | 178.7 (2) | N2—C10—C11—C12 | −175.8 (2) |
C8—C3—C4—Cl1 | 178.40 (18) | C10—C11—C12—C13 | −0.5 (4) |
C2—C3—C4—Cl1 | −2.5 (3) | C9—N3—C13—C12 | −0.5 (4) |
C3—C4—C5—C6 | 0.4 (4) | C11—C12—C13—N3 | 0.4 (4) |
Cl1—C4—C5—C6 | −178.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1 | 0.86 | 1.98 | 2.671 (3) | 137 |
N1—H1···N3i | 0.86 | 2.08 | 2.886 (4) | 157 |
Symmetry code: (i) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C13H10ClN3OS |
Mr | 291.75 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 8.421 (3), 9.282 (4), 10.512 (4) |
α, β, γ (°) | 98.336 (4), 110.797 (4), 112.532 (4) |
V (Å3) | 670.9 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.43 |
Crystal size (mm) | 0.32 × 0.11 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.874, 0.972 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3504, 2319, 1734 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.100, 1.02 |
No. of reflections | 2319 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.18 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1 | 0.86 | 1.98 | 2.671 (3) | 136.8 |
N1—H1···N3i | 0.86 | 2.08 | 2.886 (4) | 156.9 |
Symmetry code: (i) x−1, y, z. |
Acknowledgements
This work was supported by the Foundation of the Education Department of Gansu Province (No. 0604-01) and the 'Qing Lan' Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03-01 A), which are gratefully acknowledged.
References
Campo, R., Criado, J. J. & Garcia, E. (2002). J. Inorg. Biochem. 89, 74–82. Web of Science CSD CrossRef PubMed Google Scholar
Dong, W. K., Yang, X. Q., Chai, L. Q., Tian, Y. Q. & Feng, J. H. (2008). Phosphorus Sulfur Silicon, 183, 1181–1187. Web of Science CSD CrossRef CAS Google Scholar
Dong, W.-K., Yang, X.-Q. & Feng, J.-H. (2006). Acta Cryst. E62, o3459–o3460. Web of Science CSD CrossRef IUCr Journals Google Scholar
Foss, O., Husebye, S., Törnroos, K. W. & Fanwick, P. E. (2004). Polyhedron, 23, 3021–3032. Web of Science CSD CrossRef CAS Google Scholar
Guillon, E., Mohamadou, G. & Déchamps-Olivier, I. (1996). Polyhedron, 15, 947–952. CrossRef CAS Web of Science Google Scholar
Koch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488. Web of Science CrossRef CAS Google Scholar
Krepps, M. K., Parkin, S. & Atwood, D. A. (2001). Cryst. Growth Des. 1, 291–297. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Su, B. Q., Liu, G. L. & Sheng, L. (2006). Phosphorus Sulfur Silicon, 181, 745–750. Web of Science CSD CrossRef CAS Google Scholar
Su, B.-Q., Xian, L., Song, H.-B. & Sheng, L. (2004). Acta Cryst. C60, m661–m662. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Teoh, S. G., Ang, S. H. & Fun, H. K. (1999). J. Organomet. Chem. 580, 17–21. Web of Science CSD CrossRef CAS Google Scholar
Venkatachalam, T. K., Sudbeck, E. & Uckun, F. M. (2004). J. Mol. Struct. 687, 45–51. Web of Science CSD CrossRef CAS Google Scholar
West, D. X., Castiñeiras, A. & Bermejo, E. (2000). J. Mol. Struct. 520, 103–106. Web of Science CSD CrossRef CAS Google Scholar
Xian, L., Wei, T. B. & Zhang, Y. M. (2004). J. Coord. Chem. 57, 453–457. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiourea and its substituted derivatives have attracted much attention because of their unique properties, such as the strong coordination ability (Su et al., 2004; Su et al., 2006; Xian et al., 2004; West et al., 2000). They are used as selective analytical reagents, especially for the determination of transition metals in complex interfering matrices (Koch, 2001; Foss et al., 2004). It has been shown that the redox properties of thiourea are markedly influenced by electronic factors (Guillon et al., 1996), and the biological activity of thiourea derivatives has also been reported in the literature (Teoh et al., 1999; Campo et al., 2002). However, the study of S···H interactions may have fundamental importance in biochemical research due to the fact that living systems contain several important sulfur-containing molecules, such as the aminoacids cysteine and methionine (Krepps et al., 2001). Related to the biological relevance of S···H interactions, Uckum and coworkers have recently reported a structural study of a series of thiourea compounds (Venkatachalam et al., 2004). Here we report the synthesis and crystal structure of a new benzoylthiourea derivative, N-(o-chloro)benzoyl-N'-(3-pyridyl)thiourea. The molecular structure of the title compound is shown in Figure 1.
The dihedral angles formed by the plane through the thiourea group and the pyridine and benzene rings of 53.08 (3) and 87.12 (3)°, respectively. The molecular conformation is stabilized by an intramolecular N—H···O hydrogen bonding interaction (Table 1), forming a planar six-membered ring. In contrast to other thiourea compounds, the H1···S1 separation is 2.662 (2) Å, indicating that S1 is not involved in hydrogen bonding. This situation is similar to that found in the structure of N-benzoyl-N'-(3-pyridyl)thiourea (Dong et al., 2006). The C=O bond length of 1.217 (3) Å is just significantly longer than the average C=O bond length (1.200 Å) due to the intramolecular hydrogen bond. In the crystal structure, molecules are linked by intermolecular by N—H···N hydrogen interactions to form supramolecular chains along the a axis.