organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-(Oxydi­methyl­ene)dibenzo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhaohong@seu.edu.cn

(Received 19 June 2008; accepted 3 July 2008; online 9 July 2008)

The title compound, C16H12N2O, was accidentally synthesized by the reaction of 4-(bromo­meth­yl)benzonitrile and penta­erythritol. The dihedral angle between the benzene rings is 57.39 (9)°. In the crystal structure, mol­ecules are linked by inter­molecular C—H⋯N hydrogen-bonding inter­actions to form chains running parallel to the b axis.

Related literature

For applications of nitrile derivatives in the synthesis of some heterocyclic mol­ecules, see: Radl et al. (2000[Radl, S., Hezky, P., Konvicka, P. & Krejgi, J. (2000). Collect. Czech. Chem. Commun. 65, 1093-1108.]); Jin et al. (1994[Jin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem. 468, 205-212.]). For the crystal structure of a related compound, see: Fu & Zhao (2007[Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O

  • Mr = 248.28

  • Monoclinic, P 21 /c

  • a = 14.444 (3) Å

  • b = 7.6674 (13) Å

  • c = 11.897 (2) Å

  • β = 96.326 (14)°

  • V = 1309.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.35 × 0.30 × 0.30 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.939, Tmax = 0.978

  • 13064 measured reflections

  • 3007 independent reflections

  • 1498 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.149

  • S = 1.01

  • 3007 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯N2i 0.93 2.60 3.490 (3) 162
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{5\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nitrile derivatives are an important class of compounds used in the chemical industry. For example, nitrile derivatives are employed in the synthesis of some heterocyclic molecules (Radl et al., 2000), and have been used as starting materials for the synthesis of phthalocyanines (Jin et al., 1994). Recently, we have reported the crystal structure of a benzonitrile compound (Fu & Zhao, 2007). The title compound was unexpectedly obtained during our work on nitrile compounds, and its crystal structure is reported here.

In the title compound (Fig. 1), bond lengths and angles have normal values. The planes through the C2—C7 and C10—C15 benzene rings form a dihedral angle of 57.39 (9)°. The crystal structure is stabilized by an intermolecular C—H···N hydrogen bond forming chains of molecules along the b-axis (Table 1).

Related literature top

For applications of nitrile derivatives in the synthesis of some heterocyclic molecules, see: Radl et al. (2000); Jin et al. (1994). For the crystal structure of a related compound, see: Fu & Zhao (2007).

Experimental top

Pentaerythritol (0.136 g, 1 mmol) and 4-(bromomethyl)benzonitrile (0.658 g, 4 mmol) were dissolved in water in the presence of sodium hydroxide (0.160 g, 4 mmol) and heated under reflux for 2 days. After the mixture was cooled to room temperature, the solvent was removed in vacuum to afford a white precipitate of the title compound. Colourless crystals suitable for X-ray diffraction were obtained from a solution of 100 mg in 15 ml diethylether by slow evaporation after 5 days.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
4,4'-(Oxydimethylene)dibenzonitrile top
Crystal data top
C16H12N2OF(000) = 520
Mr = 248.28Dx = 1.259 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1930 reflections
a = 14.444 (3) Åθ = 2.8–27.5°
b = 7.6674 (13) ŵ = 0.08 mm1
c = 11.897 (2) ÅT = 293 K
β = 96.326 (14)°Block, colourless
V = 1309.6 (4) Å30.35 × 0.30 × 0.30 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
3007 independent reflections
Radiation source: fine-focus sealed tube1498 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scansh = 1818
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.939, Tmax = 0.978l = 1515
13064 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0573P)2]
where P = (Fo2 + 2Fc2)/3
3007 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C16H12N2OV = 1309.6 (4) Å3
Mr = 248.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.444 (3) ŵ = 0.08 mm1
b = 7.6674 (13) ÅT = 293 K
c = 11.897 (2) Å0.35 × 0.30 × 0.30 mm
β = 96.326 (14)°
Data collection top
Rigaku Mercury2
diffractometer
3007 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1498 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.978Rint = 0.072
13064 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.01Δρmax = 0.11 e Å3
3007 reflectionsΔρmin = 0.16 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21121 (10)0.2174 (2)0.82830 (14)0.0632 (5)
C130.40291 (15)0.6678 (3)1.0392 (2)0.0543 (6)
C50.05516 (16)0.2145 (3)0.5362 (2)0.0530 (6)
C10.17453 (17)0.0647 (3)0.7737 (2)0.0610 (7)
H1A0.15470.01630.82890.073*
H1B0.22180.00820.73460.073*
C160.43912 (17)0.8289 (4)1.0896 (2)0.0647 (7)
C30.10674 (17)0.2247 (3)0.6017 (2)0.0616 (7)
H30.16620.26640.59410.074*
C20.09330 (16)0.1156 (3)0.69105 (19)0.0505 (6)
C110.33163 (17)0.5062 (3)0.8811 (2)0.0608 (7)
H110.30730.50200.80540.073*
C70.00448 (17)0.0575 (3)0.7016 (2)0.0592 (7)
H70.00570.01560.76140.071*
C40.03367 (17)0.2726 (3)0.5241 (2)0.0624 (7)
H40.04400.34390.46350.075*
C100.33245 (15)0.3570 (3)0.9471 (2)0.0539 (6)
C60.06975 (17)0.1060 (3)0.6249 (2)0.0618 (7)
H60.12940.06570.63310.074*
C90.29580 (16)0.1870 (3)0.8972 (2)0.0659 (7)
H9A0.34100.13580.85240.079*
H9B0.28550.10620.95720.079*
C120.36687 (17)0.6610 (3)0.9274 (2)0.0625 (7)
H120.36620.76080.88280.075*
C140.40499 (17)0.5201 (3)1.1048 (2)0.0619 (7)
H140.43020.52411.18010.074*
C150.36940 (16)0.3653 (3)1.0584 (2)0.0625 (7)
H150.37050.26571.10310.075*
C80.13138 (19)0.2686 (3)0.4553 (2)0.0640 (7)
N20.46806 (17)0.9545 (3)1.1316 (2)0.0850 (8)
N10.19108 (17)0.3162 (3)0.3912 (2)0.0883 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0528 (10)0.0591 (10)0.0733 (11)0.0012 (8)0.0121 (8)0.0152 (8)
C130.0438 (13)0.0670 (16)0.0511 (15)0.0015 (11)0.0004 (11)0.0064 (12)
C50.0529 (15)0.0533 (14)0.0521 (15)0.0004 (11)0.0024 (12)0.0107 (11)
C10.0591 (16)0.0546 (15)0.0677 (17)0.0037 (12)0.0000 (13)0.0063 (12)
C160.0568 (16)0.0752 (19)0.0604 (17)0.0035 (13)0.0009 (13)0.0087 (14)
C30.0477 (15)0.0689 (17)0.0690 (17)0.0086 (12)0.0107 (13)0.0035 (13)
C20.0524 (14)0.0463 (13)0.0527 (15)0.0039 (11)0.0050 (11)0.0096 (11)
C110.0572 (16)0.0742 (18)0.0479 (15)0.0013 (12)0.0078 (12)0.0039 (13)
C70.0594 (16)0.0601 (16)0.0586 (16)0.0125 (12)0.0082 (13)0.0004 (12)
C40.0607 (17)0.0676 (17)0.0600 (16)0.0025 (13)0.0117 (13)0.0057 (12)
C100.0405 (13)0.0632 (16)0.0567 (15)0.0052 (11)0.0002 (11)0.0076 (12)
C60.0525 (15)0.0656 (17)0.0678 (17)0.0138 (12)0.0086 (13)0.0060 (13)
C90.0538 (15)0.0664 (17)0.0743 (18)0.0051 (12)0.0065 (13)0.0083 (13)
C120.0646 (16)0.0652 (17)0.0558 (16)0.0057 (13)0.0020 (13)0.0029 (12)
C140.0548 (16)0.0772 (19)0.0508 (15)0.0023 (13)0.0072 (12)0.0038 (13)
C150.0580 (15)0.0650 (17)0.0619 (17)0.0042 (12)0.0044 (13)0.0063 (13)
C80.0621 (17)0.0638 (17)0.0654 (18)0.0015 (13)0.0041 (14)0.0083 (13)
N20.0928 (19)0.0813 (18)0.0772 (17)0.0108 (14)0.0071 (14)0.0135 (14)
N10.0732 (16)0.0958 (18)0.0919 (19)0.0035 (14)0.0094 (14)0.0044 (15)
Geometric parameters (Å, º) top
O1—C91.414 (3)C11—C121.382 (3)
O1—C11.414 (2)C11—C101.387 (3)
C13—C141.374 (3)C11—H110.9300
C13—C121.375 (3)C7—C61.380 (3)
C13—C161.445 (3)C7—H70.9300
C5—C61.379 (3)C4—H40.9300
C5—C41.380 (3)C10—C151.373 (3)
C5—C81.441 (3)C10—C91.504 (3)
C1—C21.497 (3)C6—H60.9300
C1—H1A0.9700C9—H9A0.9700
C1—H1B0.9700C9—H9B0.9700
C16—N21.142 (3)C12—H120.9300
C3—C41.374 (3)C14—C151.384 (3)
C3—C21.384 (3)C14—H140.9300
C3—H30.9300C15—H150.9300
C2—C71.377 (3)C8—N11.145 (3)
C9—O1—C1112.70 (17)C3—C4—C5119.9 (2)
C14—C13—C12120.0 (2)C3—C4—H4120.1
C14—C13—C16119.0 (2)C5—C4—H4120.1
C12—C13—C16121.0 (2)C15—C10—C11119.1 (2)
C6—C5—C4119.8 (2)C15—C10—C9120.2 (2)
C6—C5—C8121.0 (2)C11—C10—C9120.7 (2)
C4—C5—C8119.2 (2)C5—C6—C7119.7 (2)
O1—C1—C2108.22 (18)C5—C6—H6120.1
O1—C1—H1A110.1C7—C6—H6120.1
C2—C1—H1A110.1O1—C9—C10109.29 (19)
O1—C1—H1B110.1O1—C9—H9A109.8
C2—C1—H1B110.1C10—C9—H9A109.8
H1A—C1—H1B108.4O1—C9—H9B109.8
N2—C16—C13178.5 (3)C10—C9—H9B109.8
C4—C3—C2121.0 (2)H9A—C9—H9B108.3
C4—C3—H3119.5C13—C12—C11120.1 (2)
C2—C3—H3119.5C13—C12—H12119.9
C7—C2—C3118.5 (2)C11—C12—H12119.9
C7—C2—C1121.8 (2)C13—C14—C15119.8 (2)
C3—C2—C1119.7 (2)C13—C14—H14120.1
C12—C11—C10120.2 (2)C15—C14—H14120.1
C12—C11—H11119.9C10—C15—C14120.8 (2)
C10—C11—H11119.9C10—C15—H15119.6
C2—C7—C6121.1 (2)C14—C15—H15119.6
C2—C7—H7119.4N1—C8—C5178.1 (3)
C6—C7—H7119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N2i0.932.603.490 (3)162
Symmetry code: (i) x+1, y1/2, z+5/2.

Experimental details

Crystal data
Chemical formulaC16H12N2O
Mr248.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.444 (3), 7.6674 (13), 11.897 (2)
β (°) 96.326 (14)
V3)1309.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.30 × 0.30
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.939, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
13064, 3007, 1498
Rint0.072
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.149, 1.01
No. of reflections3007
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.16

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···N2i0.932.603.490 (3)161.7
Symmetry code: (i) x+1, y1/2, z+5/2.
 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to HZ.

References

First citationFu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem. 468, 205–212.  CrossRef CAS Web of Science Google Scholar
First citationRadl, S., Hezky, P., Konvicka, P. & Krejgi, J. (2000). Collect. Czech. Chem. Commun. 65, 1093–1108.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds