metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis(3,5-di­methyl-1H-pyrazol-4-amine-κN2)cobalt(II)

aSchool of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, People's Republic of China
*Correspondence e-mail: xin883@163.com

(Received 26 June 2008; accepted 3 July 2008; online 9 July 2008)

In the title compound, [CoCl2(C5H9N3)2], the CoII atom adopts a slightly distorted tetra­hedral coordination geometry provided by two chloride anions and two N atoms from the organic ligands. The dihedral angle between the pyrazole rings is 85.91 (10)°. In the crystal structure, mol­ecules are linked into a three-dimensional network by inter­molecular N—H⋯N and N—H⋯Cl hydrogen-bonding inter­actions.

Related literature

For the crystal structures of related pyrazole compounds, see: Francisco et al. (1980[Francisco, R. H. P., Lechat, J. R., Massabni, A. C., Melios, C. B. & Molina, M. (1980). J. Coord. Chem. 10, 149-153.]); Murray et al. (1988[Murray, J. J., Raptis, R. G. & Fackler, J. P. Jr (1988). Inorg. Chem. 27, 26-33.]); Zhao & Eichhorn (2005[Zhao, N. & Eichhorn, D. M. (2005). Acta Cryst. E61, m822-m823.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C5H9N3)2]

  • Mr = 352.13

  • Triclinic, [P \overline 1]

  • a = 9.182 (3) Å

  • b = 9.191 (4) Å

  • c = 10.085 (3) Å

  • α = 94.807 (13)°

  • β = 106.105 (4)°

  • γ = 107.814 (12)°

  • V = 765.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 293 (2) K

  • 0.25 × 0.15 × 0.04 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.836, Tmax = 0.940

  • 7916 measured reflections

  • 3456 independent reflections

  • 2579 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.102

  • S = 0.98

  • 3456 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯Cl1 0.96 2.67 3.570 (5) 157
N2—H2A⋯N6i 0.86 1.98 2.835 (3) 175
N5—H5D⋯N3ii 0.86 2.08 2.919 (4) 164
N3—H3A⋯Cl2iii 0.90 2.56 3.452 (3) 169
N6—H6B⋯Cl1iv 0.90 2.72 3.457 (3) 140
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z; (iv) -x+1, -y, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Pyrazolylmethane late-transition-metal complexes of the first row have shown great potential for the construction of magnetic devices. In the course of our studies of the coordination chemistry of these ligands with cobalt, the title compound was synthesized and we report its crystal structure here.

There have been a few crystal structures reported to date for four-coordinate metal complexes containing two coordinated pyrazoles and two coordinated halides, for examples, dichlorobis(1- phenyl-3,5-dimethylpyrazole)copper(II) (Francisco et al., 1980;), dibromobis(3,5-diphenylpyrazole)copper(II) (Murray et al., 1988) and dichlorobis(3,5-dimethylpyrazole) copper(II) (Zhao & Eichhorn, 2005). The Co—N (2.003 (2) and 2.006 (2) Å) and Co—Cl bond lengths (2.2373 (10) and 2.2829 (11) Å) are within the ranges expected. The dihedral angle formed by the pyrazole rings is 85.91 (10)°. An intramolecular C—H···Cl hydrogen bond (Table 1) helps to stabilzie the molecular conformation. In the crystal structure, molecules are linked by intermolecular N—H···N and N—H···Cl hydrogen bonding interactions to form a three-dimensional network (Table 1).

Related literature top

For the crystal structure of related pyrazole compounds, see: Francisco et al. (1980); Murray et al. (1988); Zhao & Eichhorn (2005).

Experimental top

3,5-Dimethyl-1H-pyrazol-4-amine (0.111 g, 1 mmol) was dissolved in ethanol (5 ml) and CoCl2 (0.127 g, 1 mmol) in aqueous solution (5 ml) was added with stirring. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature over several days

Refinement top

All H atoms were located in a difference Fourier map and refined using the riding-atom approximation, with C—H = 0.96 Å, N—H = 0.86-0.90 Å, and with Uiso(H) = 1.2 Ueq (N) or 1.5 Ueq (C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Dichloridobis(3,5-dimethyl-1H-pyrazol-4-amine-κN2)cobalt(II) top
Crystal data top
[CoCl2(C5H9N3)2]Z = 2
Mr = 352.13F(000) = 362
Triclinic, P1Dx = 1.528 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.182 (3) ÅCell parameters from 2030 reflections
b = 9.191 (4) Åθ = 2.7–27.5°
c = 10.085 (3) ŵ = 1.47 mm1
α = 94.807 (13)°T = 293 K
β = 106.105 (4)°Plate, colourless
γ = 107.814 (12)°0.25 × 0.15 × 0.04 mm
V = 765.1 (5) Å3
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
3456 independent reflections
Radiation source: fine-focus sealed tube2579 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.8°
CCD_Profile_fitting scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.836, Tmax = 0.940l = 1313
7916 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0471P)2]
where P = (Fo2 + 2Fc2)/3
3456 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[CoCl2(C5H9N3)2]γ = 107.814 (12)°
Mr = 352.13V = 765.1 (5) Å3
Triclinic, P1Z = 2
a = 9.182 (3) ÅMo Kα radiation
b = 9.191 (4) ŵ = 1.47 mm1
c = 10.085 (3) ÅT = 293 K
α = 94.807 (13)°0.25 × 0.15 × 0.04 mm
β = 106.105 (4)°
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
3456 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2579 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.940Rint = 0.050
7916 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 0.98Δρmax = 0.35 e Å3
3456 reflectionsΔρmin = 0.32 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.36013 (4)0.23415 (4)0.15884 (4)0.03042 (13)
Cl10.21996 (10)0.22767 (10)0.06317 (8)0.0469 (2)
Cl20.24095 (9)0.03437 (9)0.25653 (8)0.0412 (2)
C10.4561 (3)0.5640 (3)0.3357 (3)0.0286 (6)
C20.3704 (3)0.6573 (3)0.3698 (3)0.0287 (6)
C30.2086 (4)0.5675 (3)0.3138 (3)0.0343 (7)
C40.6339 (4)0.6063 (4)0.3676 (3)0.0423 (8)
H4A0.66030.51340.35940.064*
H4B0.68790.66460.46150.064*
H4C0.66810.66830.30250.064*
C50.0604 (4)0.6012 (4)0.3138 (4)0.0548 (10)
H5A0.03200.52350.24610.082*
H5B0.06870.70170.29000.082*
H5C0.04860.60010.40540.082*
C60.6694 (3)0.2278 (3)0.0980 (3)0.0328 (6)
C70.7967 (3)0.1765 (3)0.1557 (3)0.0289 (6)
C80.7838 (3)0.1407 (3)0.2824 (3)0.0322 (6)
C90.6290 (5)0.2806 (5)0.0382 (4)0.0587 (10)
H9A0.51460.25840.07410.088*
H9B0.66210.22700.10390.088*
H9C0.68410.39050.02490.088*
C100.8851 (4)0.0783 (4)0.3884 (3)0.0491 (9)
H10A0.83900.05800.46240.074*
H10B0.99230.15320.42670.074*
H10C0.88940.01640.34450.074*
N10.3517 (3)0.4248 (3)0.2644 (2)0.0325 (5)
N20.2026 (3)0.4300 (3)0.2516 (3)0.0382 (6)
H2A0.11440.35400.20850.046*
N30.4325 (3)0.8117 (3)0.4457 (3)0.0368 (6)
H3A0.39340.87230.39070.044*
H3B0.54070.84730.46750.044*
N40.5806 (3)0.2228 (3)0.1851 (2)0.0335 (6)
N50.6537 (3)0.1685 (3)0.2974 (2)0.0342 (6)
H5D0.62070.15410.36870.041*
N60.9218 (3)0.1729 (3)0.1011 (3)0.0362 (6)
H6A0.89240.17820.00930.043*
H6B0.94130.08350.11040.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0280 (2)0.0327 (2)0.0333 (2)0.01479 (17)0.00943 (16)0.00507 (16)
Cl10.0451 (5)0.0591 (5)0.0349 (4)0.0222 (4)0.0057 (3)0.0085 (4)
Cl20.0346 (4)0.0415 (4)0.0474 (5)0.0122 (3)0.0119 (3)0.0154 (3)
C10.0293 (15)0.0267 (15)0.0297 (15)0.0091 (11)0.0094 (11)0.0068 (11)
C20.0342 (16)0.0288 (15)0.0249 (14)0.0114 (12)0.0116 (11)0.0057 (11)
C30.0357 (17)0.0332 (17)0.0374 (17)0.0173 (13)0.0117 (13)0.0038 (13)
C40.0331 (17)0.0422 (19)0.049 (2)0.0115 (14)0.0106 (14)0.0073 (15)
C50.039 (2)0.048 (2)0.078 (3)0.0178 (16)0.0199 (18)0.0025 (18)
C60.0285 (16)0.0401 (17)0.0332 (16)0.0120 (12)0.0133 (12)0.0117 (13)
C70.0249 (14)0.0283 (15)0.0322 (15)0.0085 (11)0.0090 (11)0.0005 (11)
C80.0262 (15)0.0392 (17)0.0314 (16)0.0140 (12)0.0075 (11)0.0031 (12)
C90.056 (2)0.096 (3)0.053 (2)0.045 (2)0.0306 (18)0.044 (2)
C100.049 (2)0.070 (3)0.0416 (19)0.0387 (18)0.0132 (15)0.0163 (17)
N10.0281 (13)0.0320 (14)0.0392 (14)0.0123 (10)0.0121 (10)0.0027 (11)
N20.0237 (13)0.0328 (14)0.0517 (17)0.0064 (10)0.0092 (11)0.0040 (12)
N30.0401 (15)0.0314 (14)0.0364 (14)0.0109 (11)0.0113 (11)0.0016 (11)
N40.0322 (14)0.0442 (15)0.0313 (14)0.0198 (11)0.0122 (10)0.0122 (11)
N50.0347 (14)0.0486 (16)0.0309 (13)0.0232 (12)0.0165 (10)0.0146 (11)
N60.0297 (14)0.0422 (15)0.0398 (15)0.0145 (11)0.0148 (11)0.0033 (11)
Geometric parameters (Å, º) top
Co1—N42.003 (2)C6—C91.483 (4)
Co1—N12.006 (2)C7—C81.373 (4)
Co1—Cl12.2373 (10)C7—N61.412 (3)
Co1—Cl22.2829 (11)C8—N51.340 (3)
C1—N11.337 (3)C8—C101.488 (4)
C1—C21.409 (4)C9—H9A0.9600
C1—C41.490 (4)C9—H9B0.9600
C2—C31.384 (4)C9—H9C0.9600
C2—N31.416 (3)C10—H10A0.9600
C3—N21.341 (4)C10—H10B0.9600
C3—C51.486 (4)C10—H10C0.9600
C4—H4A0.9600N1—N21.355 (3)
C4—H4B0.9600N2—H2A0.8600
C4—H4C0.9600N3—H3A0.9000
C5—H5A0.9600N3—H3B0.9000
C5—H5B0.9600N4—N51.364 (3)
C5—H5C0.9600N5—H5D0.8600
C6—N41.349 (3)N6—H6A0.9001
C6—C71.391 (4)N6—H6B0.9000
N4—Co1—N1116.07 (10)N5—C8—C7107.2 (2)
N4—Co1—Cl1114.54 (7)N5—C8—C10122.7 (3)
N1—Co1—Cl1103.32 (8)C7—C8—C10130.0 (3)
N4—Co1—Cl2103.72 (7)C6—C9—H9A109.5
N1—Co1—Cl2104.88 (8)C6—C9—H9B109.5
Cl1—Co1—Cl2114.26 (4)H9A—C9—H9B109.5
N1—C1—C2109.4 (2)C6—C9—H9C109.5
N1—C1—C4122.5 (2)H9A—C9—H9C109.5
C2—C1—C4128.1 (3)H9B—C9—H9C109.5
C3—C2—C1106.1 (2)C8—C10—H10A109.5
C3—C2—N3125.5 (2)C8—C10—H10B109.5
C1—C2—N3128.4 (3)H10A—C10—H10B109.5
N2—C3—C2106.3 (2)C8—C10—H10C109.5
N2—C3—C5122.1 (3)H10A—C10—H10C109.5
C2—C3—C5131.6 (3)H10B—C10—H10C109.5
C1—C4—H4A109.5C1—N1—N2106.1 (2)
C1—C4—H4B109.5C1—N1—Co1137.05 (19)
H4A—C4—H4B109.5N2—N1—Co1116.27 (17)
C1—C4—H4C109.5C3—N2—N1112.1 (2)
H4A—C4—H4C109.5C3—N2—H2A124.0
H4B—C4—H4C109.5N1—N2—H2A124.0
C3—C5—H5A109.5C2—N3—H3A109.0
C3—C5—H5B109.5C2—N3—H3B109.1
H5A—C5—H5B109.5H3A—N3—H3B108.0
C3—C5—H5C109.5C6—N4—N5105.4 (2)
H5A—C5—H5C109.5C6—N4—Co1132.8 (2)
H5B—C5—H5C109.5N5—N4—Co1120.26 (18)
N4—C6—C7109.9 (3)C8—N5—N4111.3 (2)
N4—C6—C9122.4 (3)C8—N5—H5D124.3
C7—C6—C9127.7 (3)N4—N5—H5D124.3
C8—C7—C6106.2 (2)C7—N6—H6A109.9
C8—C7—N6126.4 (3)C7—N6—H6B109.9
C6—C7—N6127.3 (3)H6A—N6—H6B108.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cl10.962.673.570 (5)157
N2—H2A···N6i0.861.982.835 (3)175
N5—H5D···N3ii0.862.082.919 (4)164
N3—H3A···Cl2iii0.902.563.452 (3)169
N6—H6B···Cl1iv0.902.723.457 (3)140
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[CoCl2(C5H9N3)2]
Mr352.13
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.182 (3), 9.191 (4), 10.085 (3)
α, β, γ (°)94.807 (13), 106.105 (4), 107.814 (12)
V3)765.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.25 × 0.15 × 0.04
Data collection
DiffractometerRigaku Mercury2 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.836, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
7916, 3456, 2579
Rint0.050
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.102, 0.98
No. of reflections3456
No. of parameters176
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.32

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cl10.962.673.570 (5)156.8
N2—H2A···N6i0.861.982.835 (3)175.3
N5—H5D···N3ii0.862.082.919 (4)163.6
N3—H3A···Cl2iii0.902.563.452 (3)169.2
N6—H6B···Cl1iv0.902.723.457 (3)140.1
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y, z.
 

References

First citationFrancisco, R. H. P., Lechat, J. R., Massabni, A. C., Melios, C. B. & Molina, M. (1980). J. Coord. Chem. 10, 149–153.  CrossRef CAS Web of Science Google Scholar
First citationMurray, J. J., Raptis, R. G. & Fackler, J. P. Jr (1988). Inorg. Chem. 27, 26–33.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, N. & Eichhorn, D. M. (2005). Acta Cryst. E61, m822–m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds