organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-1-(3-Nitro­phen­yl)-2-(4-nitro­phen­yl)ethene

aSchool of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
*Correspondence e-mail: chzcao@163.com

(Received 28 June 2008; accepted 8 July 2008; online 12 July 2008)

In the mol­ecule of the title compound, C14H10N2O4, the dihedral angle formed by the benzene rings is 53.66 (5)°. In the crystal structure, mol­ecules are linked into chains parallel to the [0[\overline{1}]1] direction by inter­molecular C—H⋯O hydrogen-bonding inter­actions.

Related literature

For related literature, see: Boonlaksiri et al. (2000[Boonlaksiri, C., Oonanant, W., Kongsaeree, P., Kittakoop, P., Tanticharoen, M. & &Thebtaranonth, Y. (2000). Phytochemistry, 54, 415-417.]); Papper & Likhtenshtein (2001[Papper, V. & Likhtenshtein, G. I. (2001). J. Photochem. Photobiol. A, 140, 39-52.]); Soto Bustmante et al. (1995[Soto Bustamante, E. A., Hanemann, T., Haase, W., Svoboda, I. & Fuess, H. (1995). Acta Cryst. C51, 2192-2196.]). For the crystal structure of a related isomer, see: Chen & Cao (2007[Chen, C. & Cao, C. (2007). Acta Cryst. E63, o3999-o4000.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N2O4

  • Mr = 270.24

  • Triclinic, [P \overline 1]

  • a = 7.2995 (13) Å

  • b = 8.0561 (11) Å

  • c = 11.831 (2) Å

  • α = 78.291 (7)°

  • β = 85.102 (7)°

  • γ = 67.536 (7)°

  • V = 629.53 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 (2) K

  • 0.50 × 0.24 × 0.19 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.981

  • 4608 measured reflections

  • 2902 independent reflections

  • 2009 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.138

  • S = 1.03

  • 2902 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1i 0.93 2.56 3.388 (2) 149
Symmetry code: (i) x, y-1, z+1.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, stilbene derivatives have attracted considerable attention from chemists and biologists because of their non-linear optical properties (Soto Bustmante et al., 1995; Papper & Likhtenshtein, 2001) and biological activities (Boonlaksiri et al., 2000). The crystal structure of the related isomer (Z)-1,2-bis(4-nitrophenyl)ethene has been previously reported by our group (Chen & Cao, 2007). We report here the crystal structure of the title compound (Fig. 1), a cis-stilbene derivative.

In the title compound, the C4—C7—C8 and C9—C8—C7 bond angles are 130.11 (16) and 129.92 (15)°, respectively. They are larger than the idealized value of 120° expected for sp2 hybrid orbitals due to the comparatively strong stereo hindrance between the two aryl groups. The dihedral angle between the two benzene rings is 53.66 (5)°. The nitro groups at C1 and C11 are slightly twisted out of the plane of the attached benzene rings forming dihedral angles of 7.92 (14) and 9.22 (10)°, respectively. In the crystal structure (Fig. 2), there is non-classical intermolecular C—H···O hydrogen bond (Table 1) linking molecules into chains running parallel to the [0 -1 1] direction.

Related literature top

For related literature, see: Boonlaksiri et al. (2000); Papper & Likhtenshtein (2001); Soto Bustmante et al. (1995). For the crystal structure of a related isomer, see: Chen & Cao (2007).

Experimental top

The title compound was synthesized by the Wittig reaction. Triphenyl(p-nitrobenzyl)phosphonium chloride (0.01 mol), which was obtained by reacting 4-nitrobenzyl chlorine with triphenyl phosphine, and 3-nitrobenzaldehyde (0.01 mol) were dissolved in CH2Cl2 (15 ml), then a 50% NaOH solution (4 ml) was titrated into the mixture. The mixture was refluxed for 40 min at 45–50 °C. After cooling to room temperature, water (15 ml) was added and the mixture was extracted with ether (20 ml). The organic layer was washed with water and dried with anhydrous sodium sulfate, then it was filtered and concentrated. The resulting yellow solution was collected and purified by column chromatography on silica gel using petroleum ether and chloroform (10:1 v/v) as eluent (yield: 8.6%). Crystals of the title compound suitable for X-ray analysis were grown by slow evaporation of an ethanol solution. 1HNMR (CDCl3)(400 MHz; TMS p.p.m.), δ(p.p.m.): 6.83–6.90 (m, 2H, –CC–), 7.31–7.54 (m, 4H, Ar), 8.13–8.17 (m, 4H, Ar).

Refinement top

The hydrogen atoms were generated geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound showing intermolecular hydrogen bonds (dashed lines) forming chains parallel to the [0 -1 1] direction.
(Z)-1-(3-Nitrophenyl)-2-(4-nitrophenyl)ethene top
Crystal data top
C14H10N2O4Z = 2
Mr = 270.24F(000) = 280
Triclinic, P1Dx = 1.426 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2995 (13) ÅCell parameters from 1175 reflections
b = 8.0561 (11) Åθ = 3.5–27.2°
c = 11.831 (2) ŵ = 0.11 mm1
α = 78.291 (7)°T = 296 K
β = 85.102 (7)°Block, yellow
γ = 67.536 (7)°0.50 × 0.24 × 0.19 mm
V = 629.53 (18) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
2902 independent reflections
Radiation source: fine-focus sealed tube2009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.9°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 99
Tmin = 0.946, Tmax = 0.981k = 109
4608 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.066P)2 + 0.0698P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2902 reflectionsΔρmax = 0.24 e Å3
182 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (7)
Crystal data top
C14H10N2O4γ = 67.536 (7)°
Mr = 270.24V = 629.53 (18) Å3
Triclinic, P1Z = 2
a = 7.2995 (13) ÅMo Kα radiation
b = 8.0561 (11) ŵ = 0.11 mm1
c = 11.831 (2) ÅT = 296 K
α = 78.291 (7)°0.50 × 0.24 × 0.19 mm
β = 85.102 (7)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2902 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2009 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.981Rint = 0.021
4608 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
2902 reflectionsΔρmin = 0.19 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.4027 (2)0.3521 (2)0.95493 (13)0.0408 (4)
C100.5246 (2)0.2712 (2)0.87050 (13)0.0407 (4)
H10A0.49410.31900.79300.049*
N20.2245 (2)0.51528 (19)0.92062 (12)0.0491 (4)
O40.1303 (2)0.59945 (18)0.99507 (11)0.0625 (4)
C90.6945 (2)0.1168 (2)0.90224 (13)0.0418 (4)
C140.7294 (3)0.0475 (2)1.01961 (14)0.0491 (4)
H14A0.83960.05811.04240.059*
C40.8254 (2)0.2702 (2)0.64805 (13)0.0445 (4)
C10.7410 (2)0.6180 (2)0.52136 (13)0.0437 (4)
N10.7019 (2)0.8008 (2)0.45317 (13)0.0553 (4)
C120.4397 (3)0.2862 (2)1.07097 (14)0.0509 (4)
H12A0.35520.34481.12620.061*
O20.7283 (2)0.91400 (19)0.49721 (13)0.0734 (4)
O30.1784 (2)0.5610 (2)0.81952 (12)0.0804 (5)
C30.8289 (3)0.4109 (2)0.69887 (14)0.0518 (4)
H3A0.85980.38680.77670.062*
C60.7387 (3)0.4823 (2)0.46765 (14)0.0490 (4)
H6A0.70890.50710.38960.059*
C50.7812 (2)0.3098 (2)0.53140 (14)0.0485 (4)
H5A0.78030.21740.49570.058*
C20.7876 (3)0.5846 (2)0.63620 (14)0.0509 (4)
H2A0.79110.67730.67070.061*
C130.6048 (3)0.1315 (3)1.10274 (14)0.0547 (5)
H13A0.63260.08341.18050.066*
C80.8307 (3)0.0184 (2)0.81795 (15)0.0511 (4)
H8A0.89270.10700.84290.061*
C70.8788 (3)0.0810 (2)0.71159 (15)0.0531 (4)
H7A0.95880.00850.67090.064*
O10.6446 (3)0.8324 (2)0.35477 (12)0.0854 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0452 (9)0.0352 (8)0.0444 (8)0.0183 (7)0.0008 (6)0.0066 (6)
C100.0452 (8)0.0378 (8)0.0383 (7)0.0167 (7)0.0026 (6)0.0025 (6)
N20.0481 (8)0.0430 (8)0.0556 (8)0.0150 (6)0.0023 (6)0.0129 (7)
O40.0606 (8)0.0543 (8)0.0711 (8)0.0164 (6)0.0168 (6)0.0256 (6)
C90.0439 (9)0.0350 (8)0.0457 (8)0.0163 (7)0.0029 (6)0.0018 (6)
C140.0525 (10)0.0419 (9)0.0503 (9)0.0207 (8)0.0091 (7)0.0066 (7)
C40.0398 (8)0.0452 (9)0.0452 (8)0.0129 (7)0.0074 (6)0.0104 (7)
C10.0399 (8)0.0440 (9)0.0449 (8)0.0156 (7)0.0068 (6)0.0060 (7)
N10.0540 (9)0.0489 (9)0.0581 (9)0.0181 (7)0.0067 (7)0.0047 (7)
C120.0675 (11)0.0484 (10)0.0420 (8)0.0291 (9)0.0087 (8)0.0086 (7)
O20.0851 (11)0.0496 (8)0.0885 (10)0.0295 (7)0.0047 (8)0.0130 (7)
O30.0746 (10)0.0741 (10)0.0590 (8)0.0134 (8)0.0155 (7)0.0145 (7)
C30.0642 (11)0.0569 (11)0.0373 (8)0.0261 (9)0.0041 (7)0.0105 (7)
C60.0498 (10)0.0544 (10)0.0416 (8)0.0181 (8)0.0002 (7)0.0095 (7)
C50.0512 (10)0.0495 (10)0.0476 (9)0.0185 (8)0.0046 (7)0.0180 (7)
C20.0624 (11)0.0497 (10)0.0462 (9)0.0260 (8)0.0092 (7)0.0157 (7)
C130.0726 (12)0.0543 (10)0.0384 (8)0.0311 (9)0.0056 (8)0.0053 (7)
C80.0503 (10)0.0353 (8)0.0586 (10)0.0082 (7)0.0026 (8)0.0035 (7)
C70.0526 (10)0.0427 (9)0.0556 (10)0.0085 (8)0.0078 (8)0.0129 (8)
O10.1193 (14)0.0700 (10)0.0582 (9)0.0343 (9)0.0165 (8)0.0116 (7)
Geometric parameters (Å, º) top
C11—C101.372 (2)C1—N11.462 (2)
C11—C121.377 (2)N1—O11.2150 (19)
C11—N21.467 (2)N1—O21.218 (2)
C10—C91.392 (2)C12—C131.374 (3)
C10—H10A0.9300C12—H12A0.9300
N2—O31.2143 (18)C3—C21.376 (2)
N2—O41.2209 (17)C3—H3A0.9300
C9—C141.393 (2)C6—C51.371 (2)
C9—C81.470 (2)C6—H6A0.9300
C14—C131.378 (3)C5—H5A0.9300
C14—H14A0.9300C2—H2A0.9300
C4—C51.389 (2)C13—H13A0.9300
C4—C31.397 (2)C8—C71.328 (2)
C4—C71.473 (2)C8—H8A0.9300
C1—C21.376 (2)C7—H7A0.9300
C1—C61.378 (2)
C10—C11—C12122.86 (15)C13—C12—C11118.13 (16)
C10—C11—N2118.83 (13)C13—C12—H12A120.9
C12—C11—N2118.31 (15)C11—C12—H12A120.9
C11—C10—C9119.22 (14)C2—C3—C4121.34 (15)
C11—C10—H10A120.4C2—C3—H3A119.3
C9—C10—H10A120.4C4—C3—H3A119.3
O3—N2—O4123.14 (15)C5—C6—C1118.73 (15)
O3—N2—C11118.50 (14)C5—C6—H6A120.6
O4—N2—C11118.35 (14)C1—C6—H6A120.6
C10—C9—C14117.92 (15)C6—C5—C4121.50 (15)
C10—C9—C8122.99 (14)C6—C5—H5A119.2
C14—C9—C8118.99 (15)C4—C5—H5A119.2
C13—C14—C9121.71 (16)C3—C2—C1118.52 (16)
C13—C14—H14A119.1C3—C2—H2A120.7
C9—C14—H14A119.1C1—C2—H2A120.7
C5—C4—C3117.99 (15)C12—C13—C14120.13 (15)
C5—C4—C7119.46 (15)C12—C13—H13A119.9
C3—C4—C7122.43 (15)C14—C13—H13A119.9
C2—C1—C6121.91 (15)C7—C8—C9129.92 (15)
C2—C1—N1119.00 (15)C7—C8—H8A115.0
C6—C1—N1119.03 (15)C9—C8—H8A115.0
O1—N1—O2123.13 (16)C8—C7—C4130.11 (16)
O1—N1—C1118.13 (16)C8—C7—H7A114.9
O2—N1—C1118.75 (15)C4—C7—H7A114.9
C12—C11—C10—C90.7 (2)C7—C4—C3—C2176.81 (16)
N2—C11—C10—C9179.75 (13)C2—C1—C6—C51.0 (3)
C10—C11—N2—O38.4 (2)N1—C1—C6—C5178.16 (14)
C12—C11—N2—O3171.23 (16)C1—C6—C5—C40.2 (3)
C10—C11—N2—O4171.07 (14)C3—C4—C5—C61.1 (2)
C12—C11—N2—O49.3 (2)C7—C4—C5—C6177.24 (16)
C11—C10—C9—C142.1 (2)C4—C3—C2—C10.4 (3)
C11—C10—C9—C8178.34 (14)C6—C1—C2—C31.3 (3)
C10—C9—C14—C132.3 (2)N1—C1—C2—C3178.45 (16)
C8—C9—C14—C13178.65 (16)C11—C12—C13—C140.6 (3)
C2—C1—N1—O1173.84 (17)C9—C14—C13—C120.9 (3)
C6—C1—N1—O18.9 (2)C10—C9—C8—C732.4 (3)
C2—C1—N1—O26.3 (2)C14—C9—C8—C7151.46 (19)
C6—C1—N1—O2170.93 (15)C9—C8—C7—C46.1 (3)
C10—C11—C12—C130.8 (3)C5—C4—C7—C8140.7 (2)
N2—C11—C12—C13178.83 (14)C3—C4—C7—C843.3 (3)
C5—C4—C3—C20.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.932.563.388 (2)149
Symmetry code: (i) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC14H10N2O4
Mr270.24
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.2995 (13), 8.0561 (11), 11.831 (2)
α, β, γ (°)78.291 (7), 85.102 (7), 67.536 (7)
V3)629.53 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.50 × 0.24 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.946, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
4608, 2902, 2009
Rint0.021
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.138, 1.03
No. of reflections2902
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.932.563.388 (2)148.6
Symmetry code: (i) x, y1, z+1.
 

Acknowledgements

The project was supported by the National Natural Science Foundation of China (NSFC) (No. 20772028) and the Natural Science Foundation of Hunan Province (NSFH) (No. 06JJ2002)

References

First citationBoonlaksiri, C., Oonanant, W., Kongsaeree, P., Kittakoop, P., Tanticharoen, M. & &Thebtaranonth, Y. (2000). Phytochemistry, 54, 415–417.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C. & Cao, C. (2007). Acta Cryst. E63, o3999–o4000.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPapper, V. & Likhtenshtein, G. I. (2001). J. Photochem. Photobiol. A, 140, 39–52.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoto Bustamante, E. A., Hanemann, T., Haase, W., Svoboda, I. & Fuess, H. (1995). Acta Cryst. C51, 2192–2196.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds