metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[zinc(II)-bis­­[μ-5-(2-amino­phenyl)tetra­zolato]-κ3N1,N5:N2;κ3N2:N1,N5]

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 6 July 2008; accepted 14 July 2008; online 16 July 2008)

The polymeric title compound, [Zn(C7H6N5)2]n, was synthesized by the hydro­thermal reaction of Zn(NO3)2 with 2-amino­benzonitrile in the presence of NaN3. The zinc(II) metal centre displays a distorted octa­hedral coordination environment provided by N atoms of two bidentate chelating and two monodentate 5-(2-amino­phen­yl)tetra­zolate ligands. These ligands act as bridges, linking adjacent Zn atoms into polymeric criss-crossed chains parallel to the [110] and [[\overline{1}]10] directions. Intra­chain N—H⋯N hydrogen-bonding inter­actions are observed.

Related literature

For the applications of tetra­zole compounds, see: Arp et al. (2000[Arp, H. P. H., Decken, A., Passmore, J. & Wood, D. J. (2000). Inorg. Chem. 39, 1840-1848.]); Dunica et al. (1991[Dunica, J. V., Pierce, M. E. & Santella, J. B. III (1991). J. Org. Chem. 56, 2395-2400.]); Wang et al. (2004[Wang, Y.-C., Zhao, H., Song, Y.-M., Wang, X.-S. & Xiong, R.-G. (2004). Appl. Organomet. Chem. 18, 494-495.], 2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]); Wittenberger & Donner (1993[Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem. 58, 4139-4141.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H6N5)2]

  • Mr = 385.71

  • Monoclinic, C 2/c

  • a = 10.6751 (16) Å

  • b = 10.9051 (14) Å

  • c = 25.321 (5) Å

  • β = 94.972 (13)°

  • V = 2936.6 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.70 mm−1

  • T = 298 (2) K

  • 0.28 × 0.12 × 0.10 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.783, Tmax = 0.844

  • 14618 measured reflections

  • 3343 independent reflections

  • 2859 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.092

  • S = 1.09

  • 3343 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10A⋯N6i 0.90 2.26 3.095 (3) 154
N9—H9A⋯N2ii 0.90 2.27 3.108 (3) 155
N9—H9B⋯N1iii 0.90 2.38 3.246 (3) 160
N9—H9B⋯N2iii 0.90 2.57 3.242 (3) 132
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

The tetrazole functional group has found a wide range of applications in coordination chemistry as polydentate ligand, in medicinal chemistry as a metabolically stable surrogate of the carboxylic group, and in materials science as the field of high density energy materials (Wang et al., 2005; Dunica et al., 1991; Wittenberger & Donner, 1993). The crystal structure of the polymeric title compound is reported here.

The compound is isostructural with the corresponding cadmium(II) derivative (Wang et al., 2004). The asymmetric unit of the title compound consists of one zinc(II) atom and two 5-(2-aminobenzyl)tetrazolato ligands. The benzene and tetrazole rings are twisted from each other at dihedral angles of 27.39(14 ) and 21.59(14 )°. Bond distances and angles within the tetrazole rings fall in the usual ranges (Wang et al., 2005; Arp et al., 2000). The metal centre exhibits a distorted octahedral coordination environment (Fig. 1) provided by N atoms of two bidentate-chelating and two monodentate ligands. Both independent ligands act as bridges linking adjacent zinc(II) atoms into polymeric criss-crossed chains parallel to the [110] and [-110] directions (Fig. 2). Intrachain N—H···N hydrogen bonding interactions (Table 1) are present.

Related literature top

For the applications of tetrazole compounds, see: Arp et al. (2000); Dunica et al. (1991); Wang et al. (2004, 2005); Wittenberger & Donner (1993).

Experimental top

A mixture of 2-aminobenzonitrile (0.2 mmol), NaN3 (0.4 mmol), Zn(NO3)2(0.15 mmol) ethanol (1 ml) and a few drops of water was sealed in a glass tube and maintained at 120 °C. Colourless block crystals suitable for X-ray analysis were obtained after 3 days.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C), N—H = 0.90 Å and Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (A) 1/2-x, 1/2-y,-z; (B) -x, 1-y, -z; (C) 1/2+x, y-1/2, z].
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the viewed along the [-110] direction. Intrachain hydrogen bonds are shwn as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
catena-Poly[zinc(II)-bis[µ-5-(2-aminophenyl)tetrazolato]- κ3N1,N5:N2;κ3N2:N1,N5] top
Crystal data top
[Zn(C7H6N5)2]F(000) = 1568
Mr = 385.71Dx = 1.745 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3668 reflections
a = 10.6751 (16) Åθ = 3.0–27.5°
b = 10.9051 (14) ŵ = 1.70 mm1
c = 25.321 (5) ÅT = 298 K
β = 94.972 (13)°Block, colourless
V = 2936.6 (8) Å30.28 × 0.12 × 0.10 mm
Z = 8
Data collection top
Rigaku Mercury2
diffractometer
3343 independent reflections
Radiation source: fine-focus sealed tube2859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.783, Tmax = 0.844l = 3232
14618 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0386P)2 + 3.3164P]
where P = (Fo2 + 2Fc2)/3
3343 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Zn(C7H6N5)2]V = 2936.6 (8) Å3
Mr = 385.71Z = 8
Monoclinic, C2/cMo Kα radiation
a = 10.6751 (16) ŵ = 1.70 mm1
b = 10.9051 (14) ÅT = 298 K
c = 25.321 (5) Å0.28 × 0.12 × 0.10 mm
β = 94.972 (13)°
Data collection top
Rigaku Mercury2
diffractometer
3343 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2859 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.844Rint = 0.044
14618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.09Δρmax = 0.37 e Å3
3343 reflectionsΔρmin = 0.70 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.16630 (3)0.40663 (2)0.032125 (11)0.02512 (10)
N40.11712 (19)0.60243 (17)0.02478 (8)0.0249 (4)
N100.0847 (2)0.4084 (2)0.10837 (9)0.0323 (5)
H10A0.02850.46960.10970.048*
H10B0.04380.33650.10380.048*
C100.1638 (2)0.4052 (2)0.15692 (10)0.0288 (5)
N90.3503 (2)0.49221 (19)0.04291 (9)0.0310 (5)
H9A0.41050.43430.04450.046*
H9B0.35210.53480.01250.046*
C90.2582 (2)0.3162 (2)0.16320 (9)0.0272 (5)
N80.24495 (18)0.23775 (18)0.06944 (8)0.0245 (4)
C10.1781 (2)0.6906 (2)0.05410 (10)0.0252 (5)
C20.2884 (2)0.6711 (2)0.09210 (10)0.0283 (5)
C140.3353 (3)0.3134 (3)0.21067 (10)0.0346 (6)
H14A0.39830.25450.21540.041*
C30.3720 (2)0.5736 (2)0.08704 (11)0.0291 (5)
C130.3197 (3)0.3964 (3)0.25076 (12)0.0438 (7)
H13A0.37180.39340.28210.053*
C40.4704 (3)0.5554 (3)0.12574 (13)0.0404 (7)
H4A0.52650.49130.12220.048*
C70.3079 (3)0.7491 (3)0.13564 (11)0.0360 (6)
H7A0.25530.81630.13850.043*
C60.4044 (3)0.7281 (3)0.17470 (12)0.0437 (7)
H6A0.41420.77880.20430.052*
C50.4859 (3)0.6316 (3)0.16940 (13)0.0451 (7)
H5A0.55150.61770.19530.054*
C110.1483 (3)0.4882 (3)0.19728 (12)0.0414 (7)
H11A0.08520.54700.19310.050*
C120.2265 (3)0.4838 (3)0.24397 (12)0.0473 (8)
H12A0.21600.54020.27080.057*
C80.2794 (2)0.2265 (2)0.12170 (9)0.0250 (5)
N60.3457 (2)0.0666 (2)0.08495 (9)0.0380 (6)
N50.3411 (2)0.1218 (2)0.13199 (9)0.0368 (5)
N70.2890 (2)0.13536 (19)0.04763 (8)0.0280 (4)
N10.1206 (2)0.79890 (19)0.04653 (9)0.0330 (5)
N20.0204 (2)0.77701 (19)0.01204 (9)0.0334 (5)
N30.01805 (19)0.65985 (19)0.00074 (9)0.0282 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02992 (17)0.02214 (16)0.02306 (16)0.00230 (11)0.00100 (11)0.00016 (11)
N40.0276 (10)0.0202 (10)0.0265 (10)0.0028 (8)0.0004 (8)0.0011 (8)
N100.0334 (12)0.0362 (12)0.0277 (11)0.0113 (9)0.0041 (9)0.0050 (9)
C100.0350 (14)0.0262 (12)0.0257 (12)0.0023 (10)0.0051 (10)0.0031 (10)
N90.0311 (11)0.0215 (10)0.0408 (13)0.0045 (9)0.0056 (9)0.0009 (9)
C90.0312 (13)0.0276 (12)0.0230 (12)0.0015 (10)0.0028 (10)0.0027 (10)
N80.0295 (10)0.0217 (10)0.0221 (10)0.0045 (8)0.0017 (8)0.0006 (8)
C10.0270 (12)0.0208 (11)0.0284 (12)0.0000 (9)0.0056 (9)0.0001 (10)
C20.0278 (12)0.0253 (12)0.0317 (13)0.0025 (10)0.0016 (10)0.0010 (10)
C140.0381 (15)0.0354 (14)0.0292 (13)0.0008 (12)0.0025 (11)0.0022 (11)
C30.0292 (13)0.0240 (12)0.0343 (14)0.0020 (10)0.0029 (10)0.0024 (10)
C130.0549 (19)0.0487 (18)0.0266 (14)0.0089 (15)0.0029 (13)0.0062 (13)
C40.0330 (14)0.0339 (14)0.0528 (18)0.0008 (12)0.0044 (13)0.0080 (13)
C70.0381 (15)0.0323 (14)0.0371 (15)0.0016 (12)0.0011 (12)0.0038 (12)
C60.0459 (17)0.0455 (17)0.0382 (16)0.0079 (14)0.0051 (13)0.0047 (14)
C50.0386 (16)0.0472 (17)0.0467 (18)0.0071 (14)0.0130 (13)0.0094 (14)
C110.0539 (18)0.0321 (14)0.0396 (16)0.0081 (13)0.0128 (13)0.0022 (12)
C120.068 (2)0.0427 (17)0.0322 (15)0.0033 (16)0.0106 (14)0.0131 (13)
C80.0256 (12)0.0245 (12)0.0248 (12)0.0030 (10)0.0019 (9)0.0042 (10)
N60.0532 (15)0.0346 (12)0.0270 (12)0.0154 (11)0.0081 (10)0.0042 (10)
N50.0485 (14)0.0376 (12)0.0245 (11)0.0164 (11)0.0034 (10)0.0034 (10)
N70.0353 (11)0.0245 (10)0.0248 (11)0.0062 (9)0.0063 (9)0.0007 (8)
N10.0308 (11)0.0243 (11)0.0426 (13)0.0009 (9)0.0042 (10)0.0014 (10)
N20.0309 (11)0.0233 (11)0.0453 (14)0.0024 (9)0.0012 (10)0.0013 (10)
N30.0283 (11)0.0243 (11)0.0318 (11)0.0027 (8)0.0006 (9)0.0029 (9)
Geometric parameters (Å, º) top
Zn1—N7i2.164 (2)C2—C31.401 (4)
Zn1—N92.170 (2)C14—C131.381 (4)
Zn1—N3ii2.181 (2)C14—H14A0.9300
Zn1—N102.186 (2)C3—C41.387 (4)
Zn1—N82.2027 (19)C13—C121.377 (4)
Zn1—N42.2028 (19)C13—H13A0.9300
N4—N31.345 (3)C4—C51.381 (5)
N4—C11.348 (3)C4—H4A0.9300
N10—C101.430 (3)C7—C61.384 (4)
N10—H10A0.9000C7—H7A0.9300
N10—H10B0.9001C6—C51.380 (4)
C10—C111.386 (4)C6—H6A0.9300
C10—C91.397 (3)C5—H5A0.9300
N9—C31.430 (3)C11—C121.388 (4)
N9—H9A0.9000C11—H11A0.9300
N9—H9B0.9001C12—H12A0.9300
C9—C141.398 (3)C8—N51.333 (3)
C9—C81.467 (3)N6—N71.312 (3)
N8—C81.348 (3)N6—N51.339 (3)
N8—N71.348 (3)N7—Zn1i2.164 (2)
C1—N11.337 (3)N1—N21.342 (3)
C1—C21.470 (3)N2—N31.318 (3)
C2—C71.394 (4)N3—Zn1ii2.181 (2)
N7i—Zn1—N986.46 (8)C7—C2—C1119.1 (2)
N7i—Zn1—N3ii81.63 (8)C3—C2—C1122.0 (2)
N9—Zn1—N3ii165.18 (8)C13—C14—C9121.2 (3)
N7i—Zn1—N10164.38 (9)C13—C14—H14A119.4
N9—Zn1—N10108.10 (9)C9—C14—H14A119.4
N3ii—Zn1—N1084.76 (9)C4—C3—C2119.5 (3)
N7i—Zn1—N896.71 (7)C4—C3—N9121.7 (2)
N9—Zn1—N889.91 (8)C2—C3—N9118.8 (2)
N3ii—Zn1—N8100.18 (8)C12—C13—C14119.6 (3)
N10—Zn1—N878.16 (8)C12—C13—H13A120.2
N7i—Zn1—N4101.33 (8)C14—C13—H13A120.2
N9—Zn1—N478.48 (8)C5—C4—C3120.7 (3)
N3ii—Zn1—N495.19 (8)C5—C4—H4A119.6
N10—Zn1—N487.46 (8)C3—C4—H4A119.6
N8—Zn1—N4157.80 (8)C6—C7—C2121.0 (3)
N3—N4—C1104.77 (18)C6—C7—H7A119.5
N3—N4—Zn1131.56 (16)C2—C7—H7A119.5
C1—N4—Zn1123.01 (16)C5—C6—C7119.6 (3)
C10—N10—Zn1120.53 (17)C5—C6—H6A120.2
C10—N10—H10A109.5C7—C6—H6A120.2
Zn1—N10—H10A110.9C6—C5—C4120.2 (3)
C10—N10—H10B109.5C6—C5—H5A119.9
Zn1—N10—H10B96.0C4—C5—H5A119.9
H10A—N10—H10B109.5C10—C11—C12120.3 (3)
C11—C10—C9120.0 (2)C10—C11—H11A119.9
C11—C10—N10121.2 (2)C12—C11—H11A119.9
C9—C10—N10118.8 (2)C13—C12—C11120.3 (3)
C3—N9—Zn1116.66 (16)C13—C12—H12A119.8
C3—N9—H9A109.5C11—C12—H12A119.8
Zn1—N9—H9A109.8N5—C8—N8111.0 (2)
C3—N9—H9B109.5N5—C8—C9122.4 (2)
Zn1—N9—H9B101.6N8—C8—C9126.6 (2)
H9A—N9—H9B109.5N7—N6—N5109.5 (2)
C10—C9—C14118.6 (2)C8—N5—N6105.5 (2)
C10—C9—C8122.4 (2)N6—N7—N8109.5 (2)
C14—C9—C8119.0 (2)N6—N7—Zn1i115.23 (16)
C8—N8—N7104.58 (19)N8—N7—Zn1i132.09 (16)
C8—N8—Zn1123.94 (16)C1—N1—N2105.5 (2)
N7—N8—Zn1130.57 (15)N3—N2—N1109.2 (2)
N1—C1—N4110.9 (2)N2—N3—N4109.6 (2)
N1—C1—C2123.6 (2)N2—N3—Zn1ii114.14 (16)
N4—C1—C2125.4 (2)N4—N3—Zn1ii131.85 (16)
C7—C2—C3118.9 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10A···N6iii0.902.263.095 (3)154
N9—H9A···N2iv0.902.273.108 (3)155
N9—H9B···N1v0.902.383.246 (3)160
N9—H9B···N2v0.902.573.242 (3)132
Symmetry codes: (iii) x1/2, y+1/2, z; (iv) x+1/2, y1/2, z; (v) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Zn(C7H6N5)2]
Mr385.71
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)10.6751 (16), 10.9051 (14), 25.321 (5)
β (°) 94.972 (13)
V3)2936.6 (8)
Z8
Radiation typeMo Kα
µ (mm1)1.70
Crystal size (mm)0.28 × 0.12 × 0.10
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.783, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
14618, 3343, 2859
Rint0.044
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.092, 1.09
No. of reflections3343
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.70

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10A···N6i0.902.263.095 (3)154.1
N9—H9A···N2ii0.902.273.108 (3)154.5
N9—H9B···N1iii0.902.383.246 (3)160.3
N9—H9B···N2iii0.902.573.242 (3)132.1
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+3/2, z.
 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationArp, H. P. H., Decken, A., Passmore, J. & Wood, D. J. (2000). Inorg. Chem. 39, 1840–1848.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDunica, J. V., Pierce, M. E. & Santella, J. B. III (1991). J. Org. Chem. 56, 2395–2400.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, Y.-C., Zhao, H., Song, Y.-M., Wang, X.-S. & Xiong, R.-G. (2004). Appl. Organomet. Chem. 18, 494–495.  Web of Science CSD CrossRef CAS Google Scholar
First citationWittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem. 58, 4139–4141.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds