metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1078-m1079

catena-Poly[[aqua­(dipyrido[3,2-a:2′,3′-c]phenazine-κ2N4,N5)zinc(II)]-μ-pyrazine-2,3-di­carboxyl­ato-κ3N1,O2:O3]

aJilin Agriculture Engineering Polytechnic College, Siping 136000, People's Republic of China, and bDepartment of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China
*Correspondence e-mail: guangbochejl@yahoo.com

(Received 9 July 2008; accepted 21 July 2008; online 26 July 2008)

In the title compound, [Zn(C6H2N2O4)(C18H10N4)(H2O)]n or [Zn(PZDC)(DPPZ)(H2O)]n (where DPPZ is dipyrido[3,2-a:2′,3′-c]phenazine and H2PZDC is pyrazine-2,3-dicarboxylic acid), the Zn atom is six-coordinated in a slightly distorted octa­hedral coordination geometry by three N atoms from one DPPZ ligand and one PZDC2− dianion, three O atoms from two different PZDC2− ligands and one water mol­ecule. Each PZDC2− dianion serves as a spacer, connecting adjacent metal atoms into a polymeric chain structure parallel to the b axis. The chain motif is consolidated into a three-dimensional supra­molecular network by O—H⋯O and O—H⋯N hydrogen bonds and ππ aromatic stacking inter­actions involving adjacent DPPZ ligands and PZDC2− dianions with centroid–centroid separations of 3.522 (6) and 3.732 (8) Å, respectively.

Related literature

For related literature, see: Che et al. (2008[Che, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184-191.]); Che, Li et al. (2006[Che, G.-B., Li, W.-L., Kong, Z.-G., Su, Z.-S., Chu, B., Li, B., Zhang, Z.-Q., Hu, Z.-Z. & Chi, H.-J. (2006). Synth. Commun. 36, 2519-2524.]); Che, Xu & Liu (2006[Che, G.-B., Xu, Z.-L. & Liu, C.-B. (2006). Acta Cryst. E62, m1695-m1696.]); Liu et al. (2008[Liu, C.-B., Che, G.-B., Wang, Q.-W. & Xu, Z.-L. (2008). Chin. J. Inorg. Chem. 24, 835-838.]); Xu et al. (2008[Xu, Z.-L., Li, X.-Y., Che, G.-B., Liu, C.-B. & Wang, Q.-W. (2008). Chin. J. Struct. Chem. 27, 593-597.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C6H2N2O4)(C18H10N4)(H2O)]

  • Mr = 531.78

  • Triclinic, [P \overline 1]

  • a = 6.7821 (14) Å

  • b = 7.4349 (15) Å

  • c = 20.410 (4) Å

  • α = 91.26 (3)°

  • β = 95.77 (3)°

  • γ = 98.16 (3)°

  • V = 1012.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 292 (2) K

  • 0.31 × 0.29 × 0.21 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.681, Tmax = 0.765

  • 9890 measured reflections

  • 4412 independent reflections

  • 3278 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.148

  • S = 1.07

  • 4412 reflections

  • 333 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—Zn 2.130 (3)
N2—Zn 2.167 (3)
N5—Zn 2.147 (3)
O1—Zn 2.172 (3)
O1W—Zn 2.120 (3)
O4—Zni 2.051 (3)
O4ii—Zn—O1W 90.19 (13)
O4ii—Zn—N1 90.37 (12)
O1W—Zn—N1 96.93 (13)
O4ii—Zn—N5 97.78 (12)
O1W—Zn—N5 86.87 (13)
N1—Zn—N5 171.02 (11)
O4ii—Zn—N2 98.61 (11)
O1W—Zn—N2 169.43 (13)
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—HW1A⋯O3iii 0.66 (5) 2.01 (5) 2.662 (4) 169 (7)
O1W—HW1B⋯N6iv 0.82 (5) 2.07 (5) 2.859 (5) 159 (4)
Symmetry codes: (iii) x-1, y-1, z; (iv) -x, -y+2, -z+2.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A successful strategy for preparing metal-organic supramolecular architectures is the assembly reaction between a transition d10 metal ion and two types of ligands with one acting as a bridging ligand and the other as a chelating ligand (Liu et al., 2008; Che et al., 2008). Pyrazine-2,3-dicarboxylic acid (H2PZDC) possesses the ability to bridge and chelate metal atoms using the carboxylate oxygen atoms and nitrogen atoms (Xu et al., 2008). 1,10-Phenanthroline (phen) and its derivatives are important chelating ligands for the construction of metal-organic complexes (Che, Xu & Liu, 2006). Dipyrido[3,2-a:2',3'-c]-phenazine (DPPZ) as a phen derivative possesses potential supramolecular recognition sites for π-π aromatic stacking interactions. The present attempt at synthesizing a new zinc polymer with DPPZ and H2PZDC gave the title complex, [Zn(DPPZ)(PZDC)(H2O)]n, whose structure is reported here.

The Zn atom is six-coordinated by three N atoms from one DPPZ ligand and one PZDC2- ligand, and three O atoms from two different PZDC2- ligands and one water molecule in a slightly distorted octahedral coordination geometry (Fig. 1). The Zn—O distances range from 2.051 (3) Å to 2.172 (3) Å and the Zn—N lengths from 2.130 (3) Å to 2.167 (3) Å (Table 1). Each PZDC2- dianion serves as a spacer to connect adjacent metal centres into a one-dimensional chain structure parallel to the b axis. Neighbouring chains interact through π-π contacts, leading to a three-dimensional supramolecular structure (Fig. 2). There are two types of π-π interactions, occurring between adjacent DPPZ ligands (centroid-to-centroid separation = 3.732 (8) Å) and PZDC2- anions (centroid-to-centroid separation = 3.522 (6) Å). Hydrogen bonds involving the O1W atom as donor and the N6 and O3 atoms of the PZDC2- dianion as acceptors further stabilize the structure (Table 2).

Related literature top

For related literature, see: Che et al. (2008); Che, Li et al. (2006); Che, Xu & Liu (2006); Liu et al. (2008); Xu et al. (2008).

Experimental top

The DPPZ ligand was synthesized according to the literature method (Che, Li et al., 2006). The title compound was hydrothermally synthesized under autogenous pressure: a mixture of DPPZ, H2PZDC, ZnNO3 and water in a molar ratio of 1:1:1:5000 was sealed in a Teflon-lined autoclave and heated to 433 K for 3 d. Upon cooling and opening the bomb, yellow blocks of the title compound were obtained (83% yield based on Zn).

Refinement top

All H atoms on C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)= 1.2Ueq(C). The hydrogen atoms of water molecule were located from a difference Fourier map and refined freely.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound. Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms). [Symmetry code: (i) x, y + 1, z.]
[Figure 2] Fig. 2. Packing diagram of the three-dimensional supramolecular structure of the title compound formed via π-π interactions. H atoms are omitted for clarity.
catena-Poly[[aqua(dipyrido[3,2-a:2',3'-c]phenazine- κ2N4,N5)zinc(II)]-µ-pyrazine-2,3-dicarboxylato-κ3N1,O2:O3] top
Crystal data top
[Zn(C6H2N2O4)(C18H10N4)(H2O)]Z = 2
Mr = 531.78F(000) = 540
Triclinic, P1Dx = 1.744 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7821 (14) ÅCell parameters from 4412 reflections
b = 7.4349 (15) Åθ = 3.0–27.5°
c = 20.410 (4) ŵ = 1.27 mm1
α = 91.26 (3)°T = 292 K
β = 95.77 (3)°Block, yellow
γ = 98.16 (3)°0.31 × 0.29 × 0.21 mm
V = 1012.9 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4412 independent reflections
Radiation source: fine-focus sealed tube3278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 88
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 98
Tmin = 0.681, Tmax = 0.765l = 2626
9890 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.084P)2 + 0.1727P]
where P = (Fo2 + 2Fc2)/3
4412 reflections(Δ/σ)max < 0.001
333 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Zn(C6H2N2O4)(C18H10N4)(H2O)]γ = 98.16 (3)°
Mr = 531.78V = 1012.9 (4) Å3
Triclinic, P1Z = 2
a = 6.7821 (14) ÅMo Kα radiation
b = 7.4349 (15) ŵ = 1.27 mm1
c = 20.410 (4) ÅT = 292 K
α = 91.26 (3)°0.31 × 0.29 × 0.21 mm
β = 95.77 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4412 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3278 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.765Rint = 0.048
9890 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.42 e Å3
4412 reflectionsΔρmin = 0.58 e Å3
333 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3785 (6)0.2965 (5)0.7826 (2)0.0344 (9)
H10.44260.30290.82060.041*
C20.4723 (6)0.1853 (6)0.7307 (2)0.0375 (10)
H20.59310.11190.73490.045*
C30.3868 (6)0.1832 (6)0.6728 (2)0.0395 (10)
H30.45280.11440.63640.047*
C40.1986 (6)0.2861 (5)0.6690 (2)0.0291 (8)
C50.0963 (6)0.2913 (5)0.60945 (19)0.0283 (8)
C60.0924 (7)0.2081 (5)0.5015 (2)0.0352 (9)
C70.1870 (8)0.1180 (6)0.4421 (2)0.0443 (11)
H70.31850.06010.44000.053*
C80.0836 (8)0.1170 (6)0.3880 (2)0.0493 (12)
H80.14580.05820.34910.059*
C90.1164 (9)0.2037 (6)0.3903 (2)0.0514 (12)
H90.18450.20030.35310.062*
C100.2107 (8)0.2921 (7)0.4464 (2)0.0479 (12)
H100.34200.34960.44710.058*
C110.1095 (7)0.2967 (6)0.5036 (2)0.0379 (10)
C120.1042 (6)0.3850 (5)0.61078 (19)0.0292 (8)
C130.1983 (6)0.4856 (5)0.67084 (19)0.0286 (8)
C140.3909 (6)0.5847 (6)0.6747 (2)0.0345 (9)
H140.46370.58830.63840.041*
C150.4710 (6)0.6763 (6)0.7322 (2)0.0346 (9)
H150.59790.74440.73530.041*
C160.3603 (6)0.6662 (5)0.7859 (2)0.0326 (9)
H160.41650.72640.82530.039*
C170.0958 (5)0.4841 (5)0.72651 (18)0.0242 (7)
C180.1092 (5)0.3868 (5)0.72530 (18)0.0256 (8)
C190.1302 (5)0.9551 (5)0.89690 (18)0.0237 (7)
C200.1992 (5)1.1069 (5)0.93824 (19)0.0247 (8)
C210.2685 (6)0.9238 (5)1.02315 (19)0.0288 (8)
H210.31210.90901.06710.035*
C220.2102 (5)0.7712 (5)0.98204 (19)0.0261 (8)
H220.22350.65660.99780.031*
C230.0378 (6)0.9589 (5)0.82528 (19)0.0271 (8)
C240.2040 (5)1.3019 (5)0.91602 (18)0.0249 (8)
N10.1984 (5)0.3963 (4)0.78077 (16)0.0267 (7)
N20.1761 (5)0.5730 (4)0.78317 (15)0.0271 (7)
N30.1925 (5)0.2047 (4)0.55512 (17)0.0349 (8)
N40.2041 (5)0.3872 (5)0.55828 (17)0.0348 (8)
N50.1356 (4)0.7877 (4)0.92032 (15)0.0234 (6)
N60.2640 (5)1.0909 (4)1.00185 (16)0.0281 (7)
O10.0880 (4)0.8227 (4)0.80655 (14)0.0362 (7)
O20.0974 (5)1.0921 (4)0.79424 (15)0.0410 (7)
O1W0.2753 (5)0.5957 (5)0.91335 (17)0.0389 (8)
O30.3705 (4)1.3872 (4)0.91050 (17)0.0427 (8)
O40.0381 (4)1.3587 (3)0.90882 (14)0.0305 (6)
Zn0.03443 (6)0.57612 (5)0.85620 (2)0.02642 (16)
HW1A0.368 (8)0.552 (8)0.909 (3)0.054 (19)*
HW1B0.295 (7)0.692 (7)0.930 (2)0.034 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (2)0.031 (2)0.037 (2)0.0052 (17)0.0120 (17)0.0021 (17)
C20.032 (2)0.036 (2)0.042 (2)0.0062 (18)0.0058 (18)0.0039 (18)
C30.038 (2)0.037 (2)0.038 (2)0.0082 (19)0.0014 (18)0.0108 (18)
C40.0326 (19)0.0232 (18)0.030 (2)0.0004 (15)0.0040 (16)0.0055 (15)
C50.0333 (19)0.0250 (18)0.0254 (19)0.0033 (16)0.0004 (15)0.0022 (15)
C60.047 (2)0.032 (2)0.027 (2)0.0109 (19)0.0004 (18)0.0010 (16)
C70.058 (3)0.040 (2)0.032 (2)0.008 (2)0.006 (2)0.0054 (18)
C80.080 (4)0.040 (2)0.026 (2)0.015 (2)0.011 (2)0.0046 (18)
C90.082 (4)0.043 (3)0.032 (2)0.011 (3)0.019 (2)0.003 (2)
C100.065 (3)0.048 (3)0.033 (2)0.011 (2)0.013 (2)0.001 (2)
C110.050 (2)0.034 (2)0.030 (2)0.007 (2)0.0097 (19)0.0021 (17)
C120.0334 (19)0.0291 (19)0.025 (2)0.0046 (16)0.0045 (16)0.0019 (15)
C130.0273 (18)0.0256 (19)0.031 (2)0.0009 (15)0.0011 (15)0.0024 (15)
C140.033 (2)0.037 (2)0.035 (2)0.0046 (17)0.0107 (17)0.0014 (17)
C150.0257 (18)0.039 (2)0.037 (2)0.0023 (17)0.0029 (17)0.0059 (18)
C160.032 (2)0.034 (2)0.029 (2)0.0023 (17)0.0001 (16)0.0016 (16)
C170.0242 (17)0.0212 (17)0.0275 (19)0.0049 (14)0.0029 (14)0.0012 (14)
C180.0274 (18)0.0208 (17)0.0273 (19)0.0009 (14)0.0003 (15)0.0009 (14)
C190.0223 (16)0.0213 (17)0.0269 (19)0.0007 (14)0.0061 (14)0.0005 (14)
C200.0207 (16)0.0185 (17)0.034 (2)0.0023 (14)0.0084 (15)0.0024 (15)
C210.0315 (18)0.0289 (19)0.0245 (19)0.0020 (16)0.0060 (15)0.0003 (15)
C220.0281 (18)0.0223 (17)0.029 (2)0.0052 (15)0.0045 (15)0.0031 (15)
C230.0302 (18)0.0231 (18)0.028 (2)0.0050 (15)0.0032 (15)0.0015 (15)
C240.0307 (18)0.0192 (16)0.0228 (18)0.0046 (15)0.0066 (15)0.0052 (13)
N10.0270 (15)0.0228 (15)0.0294 (17)0.0004 (13)0.0050 (13)0.0041 (12)
N20.0301 (16)0.0242 (15)0.0240 (16)0.0034 (13)0.0008 (13)0.0030 (12)
N30.0423 (19)0.0304 (17)0.0305 (19)0.0023 (15)0.0017 (15)0.0043 (14)
N40.0417 (19)0.0354 (18)0.0265 (18)0.0027 (15)0.0038 (15)0.0016 (14)
N50.0243 (14)0.0201 (14)0.0260 (16)0.0017 (12)0.0060 (12)0.0013 (12)
N60.0277 (15)0.0260 (16)0.0294 (17)0.0008 (13)0.0049 (13)0.0033 (13)
O10.0410 (15)0.0258 (14)0.0365 (16)0.0014 (12)0.0119 (13)0.0002 (12)
O20.0549 (19)0.0329 (15)0.0347 (17)0.0005 (14)0.0095 (14)0.0072 (12)
O1W0.0271 (16)0.0357 (18)0.052 (2)0.0066 (14)0.0164 (14)0.0192 (15)
O30.0335 (15)0.0341 (16)0.057 (2)0.0112 (13)0.0087 (14)0.0051 (14)
O40.0342 (14)0.0237 (13)0.0367 (16)0.0096 (11)0.0091 (12)0.0088 (11)
Zn0.0313 (3)0.0203 (2)0.0259 (3)0.00162 (17)0.00328 (17)0.00223 (16)
Geometric parameters (Å, º) top
C1—N11.341 (5)C15—H150.9300
C1—C21.374 (6)C16—N21.335 (5)
C1—H10.9300C16—H160.9300
C2—C31.369 (6)C17—N21.345 (5)
C2—H20.9300C17—C181.471 (5)
C3—C41.402 (5)C18—N11.341 (5)
C3—H30.9300C19—N51.347 (4)
C4—C181.393 (5)C19—C201.390 (5)
C4—C51.457 (5)C19—C231.534 (5)
C5—N31.332 (5)C20—N61.342 (5)
C5—C121.435 (5)C20—C241.525 (5)
C6—N31.344 (5)C21—N61.328 (5)
C6—C71.420 (6)C21—C221.383 (5)
C6—C111.429 (6)C21—H210.9300
C7—C81.367 (7)C22—N51.325 (5)
C7—H70.9300C22—H220.9300
C8—C91.412 (7)C23—O21.229 (4)
C8—H80.9300C23—O11.253 (5)
C9—C101.360 (7)C24—O31.231 (4)
C9—H90.9300C24—O41.254 (5)
C10—C111.414 (6)N1—Zn2.130 (3)
C10—H100.9300N2—Zn2.167 (3)
C11—N41.346 (5)N5—Zn2.147 (3)
C12—N41.324 (5)O1—Zn2.172 (3)
C12—C131.462 (5)O1W—Zn2.120 (3)
C13—C171.390 (5)O1W—HW1A0.66 (5)
C13—C141.399 (5)O1W—HW1B0.82 (5)
C14—C151.367 (6)O4—Zni2.051 (3)
C14—H140.9300Zn—O4ii2.051 (3)
C15—C161.387 (6)
N1—C1—C2122.7 (4)N1—C18—C17116.8 (3)
N1—C1—H1118.6C4—C18—C17119.9 (3)
C2—C1—H1118.6N5—C19—C20119.5 (3)
C3—C2—C1119.5 (4)N5—C19—C23115.0 (3)
C3—C2—H2120.2C20—C19—C23125.5 (3)
C1—C2—H2120.2N6—C20—C19121.5 (3)
C2—C3—C4119.2 (4)N6—C20—C24115.0 (3)
C2—C3—H3120.4C19—C20—C24123.5 (3)
C4—C3—H3120.4N6—C21—C22122.1 (4)
C18—C4—C3117.3 (4)N6—C21—H21119.0
C18—C4—C5119.9 (3)C22—C21—H21119.0
C3—C4—C5122.9 (4)N5—C22—C21120.2 (3)
N3—C5—C12121.8 (4)N5—C22—H22119.9
N3—C5—C4118.3 (3)C21—C22—H22119.9
C12—C5—C4120.0 (3)O2—C23—O1129.1 (4)
N3—C6—C7119.4 (4)O2—C23—C19116.4 (3)
N3—C6—C11121.2 (4)O1—C23—C19114.5 (3)
C7—C6—C11119.3 (4)O3—C24—O4127.8 (3)
C8—C7—C6119.6 (5)O3—C24—C20116.4 (3)
C8—C7—H7120.2O4—C24—C20115.7 (3)
C6—C7—H7120.2C1—N1—C18117.8 (3)
C7—C8—C9121.0 (4)C1—N1—Zn127.4 (3)
C7—C8—H8119.5C18—N1—Zn114.9 (2)
C9—C8—H8119.5C16—N2—C17118.8 (3)
C10—C9—C8120.8 (5)C16—N2—Zn127.2 (3)
C10—C9—H9119.6C17—N2—Zn113.4 (2)
C8—C9—H9119.6C5—N3—C6116.8 (4)
C9—C10—C11120.1 (5)C12—N4—C11117.0 (4)
C9—C10—H10119.9C22—N5—C19119.2 (3)
C11—C10—H10119.9C22—N5—Zn126.6 (2)
N4—C11—C10119.3 (4)C19—N5—Zn113.1 (2)
N4—C11—C6121.5 (4)C21—N6—C20117.3 (3)
C10—C11—C6119.2 (4)C23—O1—Zn113.8 (2)
N4—C12—C5121.6 (4)Zn—O1W—HW1A129 (5)
N4—C12—C13119.0 (3)Zn—O1W—HW1B123 (3)
C5—C12—C13119.3 (3)HW1A—O1W—HW1B100 (6)
C17—C13—C14118.0 (4)C24—O4—Zni127.6 (2)
C17—C13—C12119.8 (3)O4ii—Zn—O1W90.19 (13)
C14—C13—C12122.2 (4)O4ii—Zn—N190.37 (12)
C15—C14—C13119.5 (4)O1W—Zn—N196.93 (13)
C15—C14—H14120.2O4ii—Zn—N597.78 (12)
C13—C14—H14120.2O1W—Zn—N586.87 (13)
C14—C15—C16119.0 (4)N1—Zn—N5171.02 (11)
C14—C15—H15120.5O4ii—Zn—N298.61 (11)
C16—C15—H15120.5O1W—Zn—N2169.43 (13)
N2—C16—C15122.4 (4)N1—Zn—N277.29 (11)
N2—C16—H16118.8N5—Zn—N297.65 (12)
C15—C16—H16118.8O4ii—Zn—O1174.40 (11)
N2—C17—C13122.3 (3)O1W—Zn—O190.70 (13)
N2—C17—C18116.9 (3)N1—Zn—O195.01 (11)
C13—C17—C18120.8 (3)N5—Zn—O176.76 (11)
N1—C18—C4123.3 (3)N2—Zn—O181.10 (12)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW1A···O3iii0.66 (5)2.01 (5)2.662 (4)169 (7)
O1W—HW1B···N6iv0.82 (5)2.07 (5)2.859 (5)159 (4)
Symmetry codes: (iii) x1, y1, z; (iv) x, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C6H2N2O4)(C18H10N4)(H2O)]
Mr531.78
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)6.7821 (14), 7.4349 (15), 20.410 (4)
α, β, γ (°)91.26 (3), 95.77 (3), 98.16 (3)
V3)1012.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.31 × 0.29 × 0.21
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.681, 0.765
No. of measured, independent and
observed [I > 2σ(I)] reflections
9890, 4412, 3278
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.148, 1.07
No. of reflections4412
No. of parameters333
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.58

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
N1—Zn2.130 (3)O1—Zn2.172 (3)
N2—Zn2.167 (3)O1W—Zn2.120 (3)
N5—Zn2.147 (3)O4—Zni2.051 (3)
O4ii—Zn—O1W90.19 (13)O1W—Zn—N586.87 (13)
O4ii—Zn—N190.37 (12)N1—Zn—N5171.02 (11)
O1W—Zn—N196.93 (13)O4ii—Zn—N298.61 (11)
O4ii—Zn—N597.78 (12)O1W—Zn—N2169.43 (13)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW1A···O3iii0.66 (5)2.01 (5)2.662 (4)169 (7)
O1W—HW1B···N6iv0.82 (5)2.07 (5)2.859 (5)159 (4)
Symmetry codes: (iii) x1, y1, z; (iv) x, y+2, z+2.
 

Acknowledgements

The authors thank the Doctoral Foundation of Jilin Normal University (grant Nos. 2006006 and 2007009) and the Subject and Base Construction Foundation of Jilin Normal University (grant No. 2006041).

References

First citationChe, G.-B., Li, W.-L., Kong, Z.-G., Su, Z.-S., Chu, B., Li, B., Zhang, Z.-Q., Hu, Z.-Z. & Chi, H.-J. (2006). Synth. Commun. 36, 2519–2524.  Web of Science CrossRef CAS Google Scholar
First citationChe, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184–191.  Web of Science CSD CrossRef CAS Google Scholar
First citationChe, G.-B., Xu, Z.-L. & Liu, C.-B. (2006). Acta Cryst. E62, m1695–m1696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, C.-B., Che, G.-B., Wang, Q.-W. & Xu, Z.-L. (2008). Chin. J. Inorg. Chem. 24, 835–838.  CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Z.-L., Li, X.-Y., Che, G.-B., Liu, C.-B. & Wang, Q.-W. (2008). Chin. J. Struct. Chem. 27, 593–597.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1078-m1079
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds