metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1098-m1099

catena-Poly[[[di­aqua­terbium(III)]-tri-μ2-isonicotinato-κ6O:O′] tris­(perchlorate) monohydrate]

aSchool of Chemistry and the Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bSouth China Normal University, Key Laboratory of the Technology of Electrochemical Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: zrh321@yahoo.com.cn

(Received 17 July 2008; accepted 26 July 2008; online 31 July 2008)

In the title complex, {[Tb(C6H5NO2)3(H2O)2](ClO4)3·H2O}n, the TbIII ion is coordinated by six O atoms from six isonicotinate (inic) ligands and two water mol­ecules, displaying a bicapped trigonal-prismatic geometry. The inic ligands, which are protonated at the pyridine N atom, link the metal centres, forming a polymeric chain running parallel to the a axis. The chains are further assembled via intra- and inter­molecular O—H⋯O and N—H⋯O hydrogen-bonding inter­actions into a three-dimensional supra­molecular network involving the inic ligands, the water mol­ecules and the perchlorate anions. One of the perchlorate ions is disordered over two sites with occupancies of 0.561 (17) and 0.439 (17).

Related literature

For related literature, see: Eddaoudi et al. (2001[Eddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Rizk et al. (2005[Rizk, A. T., Kilner, C. A. & Halcrow, M. A. (2005). CrystEngComm, 7, 359-362.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb(C6H5NO2)3(H2O)2](ClO4)3·H2O

  • Mr = 880.65

  • Triclinic, [P \overline 1]

  • a = 9.5270 (4) Å

  • b = 10.9508 (4) Å

  • c = 15.1309 (6) Å

  • α = 104.402 (2)°

  • β = 91.480 (2)°

  • γ = 111.159 (2)°

  • V = 1414.17 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.88 mm−1

  • T = 296 (2) K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS, Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.566, Tmax = 0.645

  • 19700 measured reflections

  • 6605 independent reflections

  • 6206 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.048

  • S = 1.04

  • 6605 reflections

  • 452 parameters

  • 77 restraints

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.86 2.15 2.949 (4) 154
N2—H2⋯O1Wii 0.86 1.91 2.756 (3) 166
N3—H3A⋯O5iii 0.86 2.07 2.902 (3) 162
O1W—H1W⋯O4 0.84 2.48 3.054 (4) 127
O1W—H2W⋯O13 0.84 2.26 3.030 (3) 152
O2W—H4W⋯O3Wiv 0.84 2.20 2.920 (3) 145
O2W—H4W⋯O17 0.84 2.53 3.164 (2) 133
O2W—H3W⋯O11v 0.83 2.23 2.959 (9) 147
O3W—H5W⋯O12 0.84 2.20 2.934 (9) 146
O3W—H6W⋯O11vi 0.83 2.14 2.843 (9) 142
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+2, -z+1; (iii) -x, -y, -z; (iv) -x, -y+1, -z+1; (v) x, y+1, z; (vi) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design, synthesis, characterization, and properties of supramolecular networks formed by using functionalized organic molecules as bridges between metal centres are of great interest (Rizk et al., 2005; Eddaoudi et al., 2001). As a building block, isonicotinic acid is an excellent candidate for the construction of supramolecular complexes. Recently, we obtained the title new coordination polymer, whise structure is reported here.

In the title compound, each TbIII centre is coordinated by six oxygen donors of six inic ligands and two water molecules (Fig. 1), and exhibits a bicapped trigonal prismatic coordination geometry. The TbIII ions are linked by inic ligands to form a polymeric chain in the a axis direction. The Tb···Tb separations between adjacent metal atoms are 4.318 (4) and 5.259 (5) Å. Intra- and intermolecular O—H···O and N—H···O hydrogen bonding interaction (Table 1) involving the inic ligands, the water molecules and the perchlorate ions assemble neighboring chains into a three-dimensional supramolecular network (Fig. 2).

Related literature top

For related literature, see: Eddaoudi et al. (2001); Rizk et al. (2005).

Experimental top

A mixture of Tb4O7 (0.189 g, 0.25 mmol), isonicotinic acid (0.135 g, 1.5 mmol) and water (10 ml) in the presence of HClO4 (0.385 mmol) was stirred vigorously for 20 min and then sealed into a Teflon-lined stainless-steel autoclave (20 ml capacity). The autoclave was heated to and maintained at 433 K for 3 days, and then cooled to room temperature at 5 K h-1 to obtain colourless block-shaped crystals of the title compound suitable for X-ray analysis.

Refinement top

The disordered perchlorate ion was spli into two components with site occupancy factors of 0.561 (17) and0.439 (17). The Cl···O and O···O distances were restrained to be 1.44 (1) and 2.35 (1) Å, respectively. Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.84 Å and H···H = 1.35 Å, and with Uiso(H) = 1.5 Ueq(O). All other H atoms were placed at calculated positions and were treated as riding with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic-numbering scheme. Displacement ellipsoids drawn at the 30% probability level. Only the major component of disorder is shown. [Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) -x, 1-y, 1-z].
[Figure 2] Fig. 2. The supramolecular network of the title compound viewed along the a axis. Only the major componentof disorder is shown.
catena-Poly[[[diaquaterbium(III)]-tri-µ2-isonicotinato- κ6O:O'] tris(perchlorate) monohydrate] top
Crystal data top
[Tb(C6H5NO2)3(H2O)2](ClO4)3·H2OZ = 2
Mr = 880.65F(000) = 868
Triclinic, P1Dx = 2.068 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5270 (4) ÅCell parameters from 6377 reflections
b = 10.9508 (4) Åθ = 1.7–28.0°
c = 15.1309 (6) ŵ = 2.88 mm1
α = 104.402 (2)°T = 296 K
β = 91.480 (2)°Block, colourless
γ = 111.159 (2)°0.20 × 0.18 × 0.15 mm
V = 1414.17 (10) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
6605 independent reflections
Radiation source: fine-focus sealed tube6206 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scanθmax = 27.8°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS, Sheldrick, 1996)
h = 1212
Tmin = 0.566, Tmax = 0.646k = 1414
19700 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.021P)2 + 1.1255P]
where P = (Fo2 + 2Fc2)/3
6605 reflections(Δ/σ)max = 0.001
452 parametersΔρmax = 0.95 e Å3
77 restraintsΔρmin = 0.79 e Å3
Crystal data top
[Tb(C6H5NO2)3(H2O)2](ClO4)3·H2Oγ = 111.159 (2)°
Mr = 880.65V = 1414.17 (10) Å3
Triclinic, P1Z = 2
a = 9.5270 (4) ÅMo Kα radiation
b = 10.9508 (4) ŵ = 2.88 mm1
c = 15.1309 (6) ÅT = 296 K
α = 104.402 (2)°0.20 × 0.18 × 0.15 mm
β = 91.480 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
6605 independent reflections
Absorption correction: multi-scan
(SADABS, Sheldrick, 1996)
6206 reflections with I > 2σ(I)
Tmin = 0.566, Tmax = 0.646Rint = 0.024
19700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02177 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.04Δρmax = 0.95 e Å3
6605 reflectionsΔρmin = 0.79 e Å3
452 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5075 (3)0.5494 (2)0.34089 (15)0.0209 (4)
C20.5770 (3)0.5734 (2)0.25475 (15)0.0226 (5)
C30.5067 (3)0.6111 (3)0.19077 (17)0.0316 (5)
H30.41470.62090.19970.038*
C40.5740 (4)0.6338 (3)0.11420 (19)0.0421 (7)
H40.52840.66020.07120.051*
C50.7756 (4)0.5802 (3)0.1610 (2)0.0432 (7)
H50.86600.56860.14940.052*
C60.7134 (3)0.5586 (3)0.23913 (19)0.0331 (6)
H60.76260.53410.28150.040*
C70.5896 (3)0.7590 (2)0.58623 (15)0.0212 (4)
C80.6542 (3)0.9101 (2)0.63494 (16)0.0231 (5)
C90.5830 (3)0.9941 (3)0.6193 (2)0.0358 (6)
H90.49240.95810.58000.043*
C100.6474 (4)1.1312 (3)0.6624 (2)0.0416 (7)
H100.60111.18890.65200.050*
C110.8452 (4)1.1036 (3)0.7370 (2)0.0510 (8)
H110.93401.14230.77810.061*
C120.7861 (3)0.9652 (3)0.6950 (2)0.0386 (7)
H120.83470.91010.70710.046*
C130.0791 (2)0.3637 (2)0.35190 (15)0.0189 (4)
C140.1596 (3)0.2516 (2)0.26504 (15)0.0214 (4)
C150.3153 (3)0.2093 (3)0.24151 (18)0.0316 (6)
H150.37060.25290.27720.038*
C160.3860 (4)0.1024 (3)0.1649 (2)0.0432 (7)
H160.49030.07160.14890.052*
C170.1552 (4)0.0837 (3)0.13243 (19)0.0426 (7)
H170.10230.04130.09340.051*
C180.0790 (3)0.1880 (3)0.20941 (17)0.0314 (5)
H180.02520.21550.22390.038*
Cl10.19389 (9)0.70180 (8)0.03011 (5)0.04494 (17)
Cl20.29246 (9)0.22081 (7)0.09772 (5)0.04040 (16)
N10.7053 (3)0.6179 (3)0.10183 (17)0.0461 (7)
H10.74630.63270.05360.055*
N20.7759 (3)1.1812 (2)0.71899 (18)0.0424 (6)
H20.81561.26740.74490.051*
N30.3051 (3)0.0434 (2)0.11387 (16)0.0438 (6)
H3A0.35140.02420.06650.053*
O10.3135 (4)0.8310 (3)0.0649 (2)0.0980 (12)
O20.1590 (4)0.6721 (3)0.06629 (17)0.0719 (8)
O30.0636 (3)0.7009 (3)0.0738 (2)0.0740 (8)
O40.2370 (4)0.5967 (3)0.0487 (2)0.0825 (9)
O50.4033 (3)0.2007 (3)0.03987 (17)0.0615 (7)
O60.2468 (4)0.3225 (3)0.0772 (2)0.0801 (9)
O70.3532 (4)0.2641 (3)0.19129 (16)0.0728 (8)
O80.1675 (3)0.0947 (3)0.0809 (2)0.0852 (10)
O130.37551 (18)0.54575 (17)0.34757 (11)0.0256 (3)
O140.58826 (19)0.53420 (17)0.40081 (11)0.0272 (4)
O150.45551 (18)0.70996 (16)0.54760 (12)0.0265 (4)
O160.67592 (18)0.69729 (16)0.58981 (12)0.0259 (4)
O170.14890 (19)0.43444 (17)0.39150 (11)0.0275 (4)
O180.05161 (18)0.37668 (17)0.37767 (12)0.0281 (4)
Tb10.270670 (11)0.491645 (10)0.483309 (7)0.01654 (4)
O1W0.1147 (2)0.53818 (19)0.22458 (14)0.0412 (5)
H1W0.10250.49980.16810.062*
H2W0.17110.51000.25020.062*
O2W0.18165 (19)0.66276 (17)0.44776 (12)0.0298 (4)
H4W0.09050.64790.43330.045*
H3W0.21910.73910.48610.045*
O3W0.0974 (2)0.28637 (18)0.52869 (13)0.0323 (4)
H5W0.13570.25490.56360.048*
H6W0.04900.22130.48320.048*
Cl30.21484 (9)0.04724 (7)0.62478 (5)0.04379 (17)0.561 (17)
O90.3356 (12)0.1332 (11)0.5842 (9)0.062 (3)0.561 (17)
O100.3010 (12)0.0741 (6)0.7152 (4)0.065 (2)0.561 (17)
O110.1764 (12)0.0885 (8)0.5784 (8)0.066 (2)0.561 (17)
O120.0975 (11)0.0931 (12)0.6326 (9)0.109 (4)0.561 (17)
Cl3'0.21484 (9)0.04724 (7)0.62478 (5)0.04379 (17)0.439 (17)
O9'0.2951 (16)0.1488 (12)0.5860 (10)0.056 (3)0.439 (17)
O10'0.2119 (17)0.0782 (8)0.7181 (5)0.070 (3)0.439 (17)
O11'0.2277 (15)0.0826 (11)0.5862 (10)0.065 (3)0.439 (17)
O12'0.0520 (9)0.0154 (16)0.5847 (10)0.108 (4)0.439 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0267 (11)0.0172 (10)0.0180 (10)0.0069 (9)0.0022 (8)0.0055 (8)
C20.0243 (11)0.0208 (11)0.0200 (11)0.0060 (9)0.0040 (9)0.0047 (9)
C30.0322 (13)0.0395 (14)0.0264 (13)0.0141 (11)0.0057 (10)0.0141 (11)
C40.0515 (18)0.0481 (17)0.0271 (14)0.0144 (14)0.0052 (12)0.0180 (13)
C50.0402 (16)0.0495 (18)0.0404 (16)0.0183 (14)0.0189 (13)0.0098 (14)
C60.0320 (13)0.0383 (14)0.0327 (14)0.0170 (11)0.0088 (11)0.0104 (11)
C70.0236 (11)0.0185 (10)0.0199 (11)0.0064 (9)0.0062 (8)0.0046 (8)
C80.0238 (11)0.0186 (11)0.0241 (11)0.0067 (9)0.0045 (9)0.0028 (9)
C90.0327 (14)0.0224 (12)0.0481 (17)0.0093 (11)0.0036 (12)0.0052 (11)
C100.0456 (17)0.0229 (13)0.0564 (19)0.0149 (12)0.0067 (14)0.0085 (12)
C110.0418 (17)0.0331 (16)0.058 (2)0.0070 (13)0.0149 (15)0.0099 (14)
C120.0378 (15)0.0268 (13)0.0439 (16)0.0129 (11)0.0090 (12)0.0022 (12)
C130.0198 (10)0.0184 (10)0.0178 (10)0.0056 (8)0.0013 (8)0.0065 (8)
C140.0254 (11)0.0209 (11)0.0174 (10)0.0083 (9)0.0008 (8)0.0054 (9)
C150.0279 (13)0.0347 (14)0.0271 (13)0.0088 (11)0.0016 (10)0.0050 (11)
C160.0391 (16)0.0383 (16)0.0384 (16)0.0031 (13)0.0131 (12)0.0062 (13)
C170.065 (2)0.0353 (15)0.0265 (14)0.0237 (14)0.0060 (13)0.0009 (12)
C180.0370 (14)0.0313 (13)0.0256 (12)0.0154 (11)0.0048 (10)0.0041 (10)
Cl10.0505 (4)0.0462 (4)0.0342 (4)0.0140 (3)0.0078 (3)0.0105 (3)
Cl20.0534 (4)0.0382 (4)0.0268 (3)0.0162 (3)0.0091 (3)0.0056 (3)
N10.0547 (16)0.0498 (15)0.0274 (12)0.0105 (13)0.0208 (11)0.0122 (11)
N20.0426 (14)0.0191 (11)0.0502 (15)0.0027 (10)0.0063 (11)0.0033 (10)
N30.0626 (17)0.0297 (12)0.0244 (12)0.0088 (12)0.0121 (11)0.0029 (9)
O10.076 (2)0.072 (2)0.092 (2)0.0128 (16)0.0228 (18)0.0111 (17)
O20.122 (2)0.0698 (18)0.0360 (13)0.0448 (17)0.0139 (14)0.0228 (12)
O30.0541 (15)0.089 (2)0.0655 (17)0.0209 (14)0.0186 (13)0.0063 (15)
O40.112 (3)0.099 (2)0.0642 (18)0.065 (2)0.0037 (17)0.0356 (17)
O50.0657 (16)0.0725 (17)0.0480 (14)0.0280 (13)0.0226 (12)0.0155 (12)
O60.116 (3)0.091 (2)0.0670 (18)0.068 (2)0.0267 (17)0.0357 (17)
O70.112 (2)0.0620 (16)0.0280 (12)0.0186 (16)0.0000 (13)0.0070 (11)
O80.0703 (19)0.0567 (17)0.089 (2)0.0050 (14)0.0157 (16)0.0055 (15)
O130.0243 (8)0.0332 (9)0.0235 (8)0.0135 (7)0.0070 (6)0.0111 (7)
O140.0298 (9)0.0293 (9)0.0227 (8)0.0099 (7)0.0030 (7)0.0102 (7)
O150.0225 (8)0.0180 (8)0.0336 (9)0.0046 (6)0.0021 (7)0.0027 (7)
O160.0263 (9)0.0224 (8)0.0297 (9)0.0125 (7)0.0043 (7)0.0034 (7)
O170.0313 (9)0.0303 (9)0.0231 (8)0.0173 (7)0.0062 (7)0.0026 (7)
O180.0218 (8)0.0278 (9)0.0296 (9)0.0086 (7)0.0055 (7)0.0014 (7)
Tb10.01613 (6)0.01654 (6)0.01645 (6)0.00657 (4)0.00083 (4)0.00326 (4)
O1W0.0515 (12)0.0314 (10)0.0364 (11)0.0131 (9)0.0026 (9)0.0068 (8)
O2W0.0266 (9)0.0266 (9)0.0377 (10)0.0130 (7)0.0011 (7)0.0073 (8)
O3W0.0319 (9)0.0255 (9)0.0367 (10)0.0071 (7)0.0033 (8)0.0094 (8)
Cl30.0564 (4)0.0332 (3)0.0465 (4)0.0181 (3)0.0120 (3)0.0168 (3)
O90.067 (5)0.052 (4)0.069 (4)0.017 (3)0.020 (3)0.026 (3)
O100.092 (5)0.047 (3)0.042 (3)0.007 (3)0.009 (3)0.018 (2)
O110.069 (5)0.027 (3)0.081 (4)0.006 (3)0.027 (4)0.001 (2)
O120.083 (5)0.120 (7)0.144 (7)0.066 (5)0.042 (5)0.029 (5)
Cl3'0.0564 (4)0.0332 (3)0.0465 (4)0.0181 (3)0.0120 (3)0.0168 (3)
O9'0.075 (6)0.035 (4)0.056 (4)0.012 (4)0.018 (4)0.024 (3)
O10'0.101 (7)0.052 (4)0.049 (4)0.020 (4)0.018 (4)0.016 (3)
O11'0.067 (6)0.041 (4)0.078 (6)0.022 (4)0.002 (5)0.000 (3)
O12'0.063 (5)0.128 (8)0.129 (8)0.051 (5)0.002 (5)0.008 (6)
Geometric parameters (Å, º) top
C1—O131.251 (3)Cl1—O21.416 (3)
C1—O141.255 (3)Cl1—O11.419 (3)
C1—C21.515 (3)Cl1—O31.419 (3)
C2—C61.385 (3)Cl1—O41.438 (3)
C2—C31.386 (3)Cl2—O71.411 (2)
C3—C41.372 (4)Cl2—O81.419 (3)
C3—H30.9300Cl2—O61.428 (3)
C4—N11.336 (4)Cl2—O51.432 (2)
C4—H40.9300N1—H10.8600
C5—N11.332 (4)N2—H20.8600
C5—C61.370 (4)N3—H3A0.8600
C5—H50.9300O13—Tb12.4189 (16)
C6—H60.9300O14—Tb1i2.3152 (16)
C7—O161.246 (3)O15—Tb12.3406 (15)
C7—O151.254 (3)O16—Tb1i2.3268 (16)
C7—C81.515 (3)O17—Tb1ii2.3702 (16)
C8—C121.375 (4)O18—Tb12.3293 (15)
C8—C91.383 (4)Tb1—O14i2.3152 (16)
C9—C101.372 (4)Tb1—O16i2.3268 (16)
C9—H90.9300Tb1—O17ii2.3701 (16)
C10—N21.327 (4)Tb1—O2W2.4789 (17)
C10—H100.9300Tb1—O3W2.5292 (17)
C11—N21.321 (4)O1W—H1W0.8376
C11—C121.380 (4)O1W—H2W0.8389
C11—H110.9300O2W—H4W0.8361
C12—H120.9300O2W—H3W0.8339
C13—O181.242 (3)O3W—H5W0.8383
C13—O171.250 (3)O3W—H6W0.8343
C13—C141.512 (3)Cl3—O10'1.371 (7)
C14—C181.382 (3)Cl3—O121.378 (6)
C14—C151.391 (3)Cl3—O9'1.378 (9)
C15—C161.372 (4)Cl3—O111.382 (8)
C15—H150.9300Cl3—O11'1.447 (9)
C16—N31.323 (4)Cl3—O91.459 (8)
C16—H160.9300Cl3—O101.484 (6)
C17—N31.333 (4)Cl3—O12'1.534 (8)
C17—C181.373 (4)O10—O10'0.867 (9)
C17—H170.9300O12—O12'0.921 (10)
C18—H180.9300O12—O10'1.745 (12)
O13—C1—O14124.7 (2)C17—N3—H3A118.5
O13—C1—C2118.7 (2)C1—O13—Tb1115.63 (14)
O14—C1—C2116.6 (2)C1—O14—Tb1i177.12 (16)
C6—C2—C3118.9 (2)C7—O15—Tb1136.30 (15)
C6—C2—C1120.1 (2)C7—O16—Tb1i144.47 (15)
C3—C2—C1121.0 (2)C13—O17—Tb1ii152.03 (16)
C4—C3—C2119.5 (3)C13—O18—Tb1148.90 (15)
C4—C3—H3120.3O14i—Tb1—O16i76.86 (6)
C2—C3—H3120.3O14i—Tb1—O18142.30 (6)
N1—C4—C3119.6 (3)O16i—Tb1—O1881.76 (6)
N1—C4—H4120.2O14i—Tb1—O1575.81 (6)
C3—C4—H4120.2O16i—Tb1—O15124.12 (6)
N1—C5—C6119.4 (3)O18—Tb1—O15141.36 (6)
N1—C5—H5120.3O14i—Tb1—O17ii81.73 (6)
C6—C5—H5120.3O16i—Tb1—O17ii140.19 (6)
C5—C6—C2119.8 (3)O18—Tb1—O17ii95.97 (6)
C5—C6—H6120.1O15—Tb1—O17ii81.27 (6)
C2—C6—H6120.1O14i—Tb1—O13122.25 (6)
O16—C7—O15127.4 (2)O16i—Tb1—O1376.08 (6)
O16—C7—C8116.1 (2)O18—Tb1—O1381.06 (6)
O15—C7—C8116.6 (2)O15—Tb1—O1378.95 (6)
C12—C8—C9119.3 (2)O17ii—Tb1—O13143.18 (6)
C12—C8—C7119.7 (2)O14i—Tb1—O2W140.16 (6)
C9—C8—C7121.0 (2)O16i—Tb1—O2W140.79 (6)
C10—C9—C8119.3 (3)O18—Tb1—O2W71.74 (6)
C10—C9—H9120.3O15—Tb1—O2W70.71 (6)
C8—C9—H9120.3O17ii—Tb1—O2W72.52 (6)
N2—C10—C9119.7 (3)O13—Tb1—O2W71.74 (6)
N2—C10—H10120.1O14i—Tb1—O3W73.90 (6)
C9—C10—H10120.1O16i—Tb1—O3W71.06 (6)
N2—C11—C12120.1 (3)O18—Tb1—O3W69.91 (6)
N2—C11—H11120.0O15—Tb1—O3W141.20 (6)
C12—C11—H11120.0O17ii—Tb1—O3W70.93 (6)
C8—C12—C11119.0 (3)O13—Tb1—O3W138.50 (6)
C8—C12—H12120.5O2W—Tb1—O3W122.65 (6)
C11—C12—H12120.5H1W—O1W—H2W107.2
O18—C13—O17125.8 (2)Tb1—O2W—H4W123.7
O18—C13—C14116.4 (2)Tb1—O2W—H3W113.6
O17—C13—C14117.84 (19)H4W—O2W—H3W107.2
C18—C14—C15119.4 (2)Tb1—O3W—H5W118.0
C18—C14—C13120.0 (2)Tb1—O3W—H6W112.5
C15—C14—C13120.6 (2)H5W—O3W—H6W106.9
C16—C15—C14119.1 (3)O10'—Cl3—O1278.8 (5)
C16—C15—H15120.5O10'—Cl3—O9'119.3 (7)
C14—C15—H15120.5O12—Cl3—O9'91.0 (7)
N3—C16—C15119.7 (3)O10'—Cl3—O11117.0 (7)
N3—C16—H16120.2O12—Cl3—O11116.2 (5)
C15—C16—H16120.2O9'—Cl3—O11121.0 (9)
N3—C17—C18119.7 (3)O10'—Cl3—O11'113.6 (7)
N3—C17—H17120.1O12—Cl3—O11'135.4 (6)
C18—C17—H17120.1O9'—Cl3—O11'114.8 (8)
C17—C18—C14119.0 (3)O10'—Cl3—O9121.1 (7)
C17—C18—H18120.5O12—Cl3—O9110.0 (5)
C14—C18—H18120.5O11—Cl3—O9110.2 (6)
O2—Cl1—O1110.4 (2)O11'—Cl3—O999.6 (8)
O2—Cl1—O3109.95 (19)O12—Cl3—O10112.4 (4)
O1—Cl1—O3109.64 (19)O9'—Cl3—O10107.3 (8)
O2—Cl1—O4108.26 (17)O11—Cl3—O10108.0 (5)
O1—Cl1—O4110.4 (2)O11'—Cl3—O1094.6 (6)
O3—Cl1—O4108.2 (2)O9—Cl3—O1098.6 (6)
O7—Cl2—O8108.89 (19)O10'—Cl3—O12'104.2 (6)
O7—Cl2—O6109.02 (18)O9'—Cl3—O12'100.7 (7)
O8—Cl2—O6111.1 (2)O11—Cl3—O12'81.5 (6)
O7—Cl2—O5110.65 (18)O11'—Cl3—O12'100.6 (5)
O8—Cl2—O5108.17 (17)O9—Cl3—O12'116.1 (6)
O6—Cl2—O5109.06 (17)O10—Cl3—O12'138.6 (5)
C5—N1—C4122.8 (2)O10'—O10—Cl365.4 (6)
C5—N1—H1118.6O12'—O12—Cl381.1 (7)
C4—N1—H1118.6O12'—O12—O10'115.2 (10)
C11—N2—C10122.6 (2)Cl3—O12—O10'50.4 (3)
C11—N2—H2118.7O10—O10'—Cl379.5 (7)
C10—N2—H2118.7O10—O10'—O12127.9 (9)
C16—N3—C17123.1 (2)Cl3—O10'—O1250.8 (4)
C16—N3—H3A118.5O12—O12'—Cl362.5 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6iii0.862.152.949 (4)154
N2—H2···O1Wiv0.861.912.756 (3)166
N3—H3A···O5v0.862.072.902 (3)162
O1W—H1W···O40.842.483.054 (4)127
O1W—H2W···O130.842.263.030 (3)152
O2W—H4W···O3Wii0.842.202.920 (3)145
O2W—H4W···O170.842.533.164 (2)133
O2W—H3W···O11vi0.832.232.959 (9)147
O3W—H5W···O120.842.202.934 (9)146
O3W—H6W···O11vii0.832.142.843 (9)142
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y+1, z; (iv) x+1, y+2, z+1; (v) x, y, z; (vi) x, y+1, z; (vii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Tb(C6H5NO2)3(H2O)2](ClO4)3·H2O
Mr880.65
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.5270 (4), 10.9508 (4), 15.1309 (6)
α, β, γ (°)104.402 (2), 91.480 (2), 111.159 (2)
V3)1414.17 (10)
Z2
Radiation typeMo Kα
µ (mm1)2.88
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS, Sheldrick, 1996)
Tmin, Tmax0.566, 0.646
No. of measured, independent and
observed [I > 2σ(I)] reflections
19700, 6605, 6206
Rint0.024
(sin θ/λ)max1)0.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.048, 1.04
No. of reflections6605
No. of parameters452
No. of restraints77
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.79

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.862.152.949 (4)154.3
N2—H2···O1Wii0.861.912.756 (3)166.4
N3—H3A···O5iii0.862.072.902 (3)161.9
O1W—H1W···O40.842.483.054 (4)127.0
O1W—H2W···O130.842.263.030 (3)151.8
O2W—H4W···O3Wiv0.842.202.920 (3)144.5
O2W—H4W···O170.842.533.164 (2)133.4
O2W—H3W···O11v0.832.232.959 (9)146.8
O3W—H5W···O120.842.202.934 (9)146.4
O3W—H6W···O11vi0.832.142.843 (9)142.4
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z+1; (iii) x, y, z; (iv) x, y+1, z+1; (v) x, y+1, z; (vi) x, y, z+1.
 

Acknowledgements

The authors acknowledge South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationEddaoudi, M., Moler, D. B., Li, H. L., Chen, B. L., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRizk, A. T., Kilner, C. A. & Halcrow, M. A. (2005). CrystEngComm, 7, 359–362.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1098-m1099
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds