metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m996-m997

Di-μ-aqua-bis­­[di­aqua­bis­(thio­cyanato-κN)iron(II)] 4-(4-chloro­phen­yl)-1,2,4-triazole hexa­solvate

aCollege of Chemistry, Chifeng University, Inner Mongolia 024000, People's Republic of China, and bCollege of Science, Inner Mongolia Agricultural University, Inner Mongolia 010018, People's Republic of China
*Correspondence e-mail: yazoe@mail.nankai.edu.cn

(Received 6 June 2008; accepted 25 June 2008; online 5 July 2008)

The title complex, [Fe2(NCS)4(H2O)6]·6C8H6ClN3, comprises two distorted octa­hedral iron(II) centers straddling a crystallographic inversion center and bridged by two aqua O atoms to form a quadrilateral core. The aqua O atom of the core is involved in hydrogen bonds with the triazole N atoms of the solvent mol­ecules, generating one-dimensional ladder motifs, and three inter­molecular C—H⋯S hydrogen bonds, forming a three-dimensional hydrogen-bonding network.

Related literature

For related literature, see: Hsu et al. (1999[Hsu, H. F., Dong, Y., Shu, L., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc. 121, 5230-5237.]); MacMurdo et al. (2000[MacMurdo, V. L., Zheng, H. & Que, L. Jr (2000). Inorg. Chem. 39, 2254-2255.]); Nordlund & Eklund (1993[Nordlund, P. & Eklund, H. (1993). J. Mol. Biol. 232, 123-164.]); Sazinsky et al. (2004[Sazinsky, M. H., Bard, J., Di Donato, A. & Lippard, S. J. (2004). J. Biol. Chem. 279, 30600-30610.]); Stubbe & Van der Donk (1998[Stubbe, J. & Van der Donk, W. A. (1998). Chem. Rev. 98, 705-762.]); Yoon et al. (2004[Yoon, S., Kelly, A. E. & Lippard, S. J. (2004). Polyhedron, 23, 2805-2812.]); Zheng et al. (1999[Zheng, H., Zang, Y., Dong, Y., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc. 121, 2226-2235.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(NCS)4(H2O)6]·6C8H6ClN3

  • Mr = 1529.76

  • Triclinic, [P \overline 1]

  • a = 7.944 (3) Å

  • b = 11.085 (5) Å

  • c = 19.912 (10) Å

  • α = 105.613 (10)°

  • β = 97.750 (10)°

  • γ = 97.932 (7)°

  • V = 1645.1 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 298 (2) K

  • 0.25 × 0.21 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.810, Tmax = 0.865

  • 8642 measured reflections

  • 5705 independent reflections

  • 2903 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.076

  • S = 0.77

  • 5705 reflections

  • 439 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—N1 2.086 (3)
Fe1—O2 2.100 (2)
Fe1—O3 2.102 (3)
Fe1—N2 2.107 (3)
Fe1—O1i 2.264 (3)
Fe1—O1 2.281 (2)
N1—Fe1—O2 90.22 (11)
N1—Fe1—O3 89.68 (12)
O2—Fe1—O3 101.01 (10)
N1—Fe1—N2 178.33 (12)
O2—Fe1—O1i 89.04 (10)
O3—Fe1—O1i 169.95 (9)
N2—Fe1—O1i 91.32 (11)
O1i—Fe1—O1 78.36 (9)
Fe1i—O1—Fe1 101.64 (9)
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N10ii 0.87 (3) 1.97 (3) 2.827 (4) 170 (3)
O1—H2⋯N9 0.88 (3) 1.94 (3) 2.819 (4) 173 (3)
O2—H3⋯N7iii 0.88 (3) 1.98 (3) 2.866 (5) 178 (3)
O2—H4⋯N4iv 0.88 (2) 1.97 (3) 2.853 (4) 175 (3)
O3—H5⋯N6 0.88 (3) 1.92 (3) 2.802 (4) 174 (3)
O3—H6⋯N3v 0.88 (2) 1.93 (2) 2.803 (4) 172 (3)
C3—H7⋯S2vi 0.93 2.72 3.624 (5) 165
C22—H21⋯S2ii 0.93 2.87 3.736 (5) 156
C11—H13⋯S1vii 0.93 2.87 3.783 (5) 167
Symmetry codes: (ii) -x, -y, -z+1; (iii) x+1, y, z; (iv) x, y-1, z; (v) x-1, y-1, z; (vi) x, y+1, z; (vii) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The diiron unit, with a carboxylate-rich coordination environment, continue to attract considerable attention due to the enzyme catalysis activity, which occur in related multicompent dioxygen dependent enzymes, including toluene monooxygenase (Sazinsky et al., 2004), the R2 subunit of ribonucleotide reductase (Stubbe & Van der Donk, 1998; Nordlund & Eklund, 1993). With the development of compounds that contained the diiron center, the structure of a series of Fe2(II,II) (MacMurdo et al., 2000), Fe2(III,III) (Zheng et al., 1999) and Fe2(III,IV) (Hsu et al., 1999) complexes with a central 2Fe2O quadrilateral have been currently obtained. Compared with the chelating to the iron atoms with the carboxylic oxygen atoms, it is rarely reported that the quadrilateral center includes both aqueous oxygen atoms. In order to explore the furthur details of the coordinated environment of the diiron system, the title complex was synthesized. As shown in Fig. 1, the complex structure comprises two distorted octahedron iron(II) centers straddling a crystallographic inversion center bridged by two aqueous oxygen atoms to form a quadrilateral core. The separation between the iron atoms is 3.523 (2) Å, which is remarkably different from that 3.0430 (7)Å reported previously, owing to the absence of two carboxylate ligands (Yoon et al., 2004). Moreover, the distance of Fe—Fe is comparatively distinguished from that diiron containing the other higher valence of iron (MacMurdo et al., 2000; Zheng et al., 1999; Hsu et al., 1999). The bond lengths of Fe—O1 and Fe—O1a are 2.264 (3) and 2.281 (2) Å, and the angles of O1—Fe—O1a and Fe1a—O1—Fe are 78.36 (9)° and 101.64 (9)°. Each Fe(II) center resides in a six-coordinated octahedron of N2O4. On the equator plane, the center is bridged by two symmetrical O1 (water) to form the quadrilateral core with the mean distance of 2.272 (2) Å, and is connected with O2 and O3 offered by different waters as the terminal ligands with the bond lengths 2.102 (3)Å and 2.100 (2) Å. The axial positions are occupied by two N atoms from the NCS- anions with the distances 2.086 (3)Å and 2.107 (3)Å to the iron core. Selected bonds and angles are listed in Table 1. As indicated in Fig.2, the classic intermolecular O—H···N H-bonds are formed between the triazol nitrogen atom supplied by the uncoordinated organic ligand 1,2,4-triazol-chloro-benzene and aquous oxygen atoms supplied by the bridging and terminal water ligands to generate a one-dimension ladder structure with the N···O separation ranged from 2.803 (2)Å to 2.866 (4) Å. Moreover, there are three weak intermolecular hydrogen bonding contacts C—H···S that form a three-dimensional network with the C···S distances between 3.624 (5) Å and 3.783 (5) Å. The details of the hydrogen bonds are shown in Table 2.

Related literature top

For related literature, see: Hsu et al. (1999); MacMurdo et al. (2000); Nordlund & Eklund (1993); Sazinsky et al. (2004); Stubbe & Van der Donk (1998); Yoon et al. (2004); Zheng et al. (1999).

Experimental top

The compound was synthesized under hydrothermal conditions. A mixture of L (L=1,2,4-triazol-chloro-benzene) (0.3 mmol, 0.0538 g), FeSO4˙7H2O (0.1 mmol, 0.028 g), KSCN (0.2 mmol, 0.019 g) and water (10 mL) was placed in a 25 mL acid digestion bomb and heated at 433 K for two days, then equably cooled to room temperature for three days. After washed by 5 ml water for twice, green block crystals of the compound were obtained.

Refinement top

The water H atoms were located in a Fourier difference map and refined subject to an O—H restraint 0.88 (1)Å and an H···H restraint of 1.42 (2)Å. Other H atoms were allowed to ride on their parent atoms with C—H distances of 0.93 Å (Uiso(H)=1.2Ueq(C)). All of the non-hydrogen atoms were refined anisotropically.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering schemes. H atoms have been omitted for clarity. Atoms of the inversion-related half-complex are indicated with A, symmetry code: (-x + 1, -y, -z + 1).
[Figure 2] Fig. 2. The three-dimensional structure of the title complex, the chains were drawn in different colors. Dashed lines indicate hydrogen bonds.
Di-µ-aqua-bis[diaquabis(thiocyanato-κN)iron(II)] 4-(4-chlorophenyl)-1,2,4-triazole hexasolvate top
Crystal data top
[Fe2(NCS)4(H2O)6]·6C8H6ClN3Z = 1
Mr = 1529.76F(000) = 780
Triclinic, P1Dx = 1.544 Mg m3
a = 7.944 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.085 (5) ÅCell parameters from 1471 reflections
c = 19.912 (10) Åθ = 2.5–22.0°
α = 105.613 (10)°µ = 0.88 mm1
β = 97.75 (1)°T = 298 K
γ = 97.932 (7)°Block, green
V = 1645.1 (12) Å30.25 × 0.21 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5705 independent reflections
Radiation source: fine-focus sealed tube2903 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.811, Tmax = 0.865k = 1113
8642 measured reflectionsl = 2123
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 0.77 w = 1/[σ2(Fo2) + (0.0191P)2]
where P = (Fo2 + 2Fc2)/3
5705 reflections(Δ/σ)max = 0.002
439 parametersΔρmax = 0.25 e Å3
9 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Fe2(NCS)4(H2O)6]·6C8H6ClN3γ = 97.932 (7)°
Mr = 1529.76V = 1645.1 (12) Å3
Triclinic, P1Z = 1
a = 7.944 (3) ÅMo Kα radiation
b = 11.085 (5) ŵ = 0.88 mm1
c = 19.912 (10) ÅT = 298 K
α = 105.613 (10)°0.25 × 0.21 × 0.17 mm
β = 97.75 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5705 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2903 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.865Rint = 0.032
8642 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0449 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 0.77Δρmax = 0.25 e Å3
5705 reflectionsΔρmin = 0.24 e Å3
439 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.53640 (6)0.12392 (5)0.46090 (2)0.04255 (16)
Cl10.81665 (15)0.70325 (12)0.09593 (6)0.0942 (4)
Cl20.41822 (16)0.88209 (11)0.91545 (5)0.0932 (4)
Cl30.28229 (14)0.59403 (11)1.00137 (5)0.0879 (4)
N10.5944 (4)0.2571 (3)0.56111 (15)0.0518 (9)
N20.4754 (3)0.0065 (3)0.35844 (15)0.0493 (8)
N31.0886 (4)1.1192 (3)0.31387 (16)0.0633 (10)
N40.9153 (4)1.0935 (3)0.31608 (16)0.0545 (9)
N50.9562 (4)0.9986 (3)0.20814 (15)0.0469 (8)
N60.2192 (4)0.4095 (3)0.51909 (16)0.0575 (9)
N70.0498 (4)0.3852 (3)0.53051 (17)0.0575 (9)
N80.2018 (4)0.5377 (3)0.62253 (16)0.0447 (8)
N90.1490 (4)0.1463 (3)0.59896 (14)0.0468 (8)
N100.0244 (4)0.1290 (3)0.60322 (15)0.0461 (8)
N110.1199 (3)0.2618 (3)0.70379 (14)0.0395 (7)
O10.3213 (3)0.0112 (2)0.49662 (13)0.0402 (6)
O20.7680 (3)0.2021 (3)0.43624 (14)0.0524 (7)
O30.3662 (3)0.2333 (3)0.42643 (14)0.0517 (7)
S10.67311 (13)0.44880 (10)0.69114 (5)0.0643 (3)
S20.40098 (12)0.15078 (10)0.21581 (5)0.0616 (3)
C10.6275 (4)0.3375 (3)0.61526 (19)0.0414 (9)
C20.4443 (4)0.0668 (3)0.29919 (19)0.0432 (10)
C30.8410 (5)1.0220 (4)0.2526 (2)0.0539 (11)
H70.72290.99060.23940.065*
C41.1071 (5)1.0625 (4)0.2506 (2)0.0658 (13)
H81.21321.06510.23570.079*
C50.9232 (5)0.9260 (4)0.13488 (19)0.0478 (10)
C61.0521 (5)0.9321 (4)0.0947 (2)0.0678 (13)
H91.15980.98280.11540.081*
C71.0201 (5)0.8626 (4)0.0238 (2)0.0769 (14)
H101.10650.86540.00320.092*
C80.8611 (5)0.7902 (4)0.00595 (19)0.0603 (11)
C90.7322 (5)0.7823 (4)0.0331 (2)0.0647 (12)
H110.62460.73180.01200.078*
C100.7645 (5)0.8500 (4)0.1036 (2)0.0633 (12)
H120.67840.84460.13050.076*
C110.0450 (5)0.4635 (4)0.5915 (2)0.0558 (11)
H130.05400.46830.61150.067*
C120.3038 (5)0.5010 (4)0.5745 (2)0.0594 (11)
H140.41980.53640.58020.071*
C130.2501 (5)0.6260 (3)0.69190 (19)0.0439 (9)
C140.1375 (5)0.6350 (4)0.7392 (2)0.0592 (11)
H150.02650.58670.72500.071*
C150.1885 (5)0.7152 (4)0.8074 (2)0.0665 (12)
H160.11120.72200.83890.080*
C160.3512 (6)0.7843 (4)0.82879 (19)0.0579 (11)
C170.4632 (5)0.7791 (4)0.7819 (2)0.0668 (13)
H170.57300.82920.79630.080*
C180.4138 (5)0.7001 (4)0.7134 (2)0.0657 (12)
H180.49020.69660.68170.079*
C190.0374 (4)0.1979 (3)0.66556 (19)0.0474 (10)
H190.14100.20290.68210.057*
C200.2307 (5)0.2255 (3)0.65901 (19)0.0497 (10)
H200.34970.25360.66990.060*
C210.1591 (4)0.3441 (3)0.77494 (18)0.0412 (9)
C220.0297 (4)0.3605 (3)0.81508 (19)0.0527 (11)
H210.08330.31910.79540.063*
C230.0681 (5)0.4380 (4)0.8839 (2)0.0591 (11)
H220.01940.45000.91040.071*
C240.2350 (5)0.4975 (4)0.91359 (19)0.0560 (11)
C250.3640 (5)0.4839 (4)0.8742 (2)0.0591 (11)
H230.47630.52680.89410.071*
C260.3268 (4)0.4065 (3)0.80535 (19)0.0524 (10)
H240.41470.39610.77900.063*
H10.237 (3)0.039 (3)0.4646 (12)0.094 (15)*
H20.276 (4)0.058 (3)0.5303 (14)0.108 (18)*
H30.854 (3)0.260 (3)0.4649 (14)0.108 (18)*
H40.809 (4)0.170 (3)0.3975 (10)0.078 (15)*
H50.323 (4)0.287 (3)0.4580 (14)0.100 (17)*
H60.279 (3)0.192 (3)0.3924 (12)0.085 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0324 (3)0.0523 (3)0.0402 (3)0.0071 (3)0.0074 (2)0.0088 (3)
Cl10.0811 (9)0.1224 (11)0.0619 (7)0.0147 (8)0.0189 (6)0.0027 (7)
Cl20.1116 (11)0.0920 (9)0.0594 (7)0.0173 (8)0.0104 (7)0.0025 (6)
Cl30.0801 (8)0.1053 (10)0.0563 (7)0.0014 (7)0.0202 (6)0.0076 (7)
N10.043 (2)0.057 (2)0.050 (2)0.0085 (17)0.0069 (16)0.0060 (17)
N20.0364 (19)0.060 (2)0.050 (2)0.0120 (16)0.0093 (16)0.0124 (18)
N30.046 (2)0.089 (3)0.051 (2)0.0173 (19)0.0071 (18)0.012 (2)
N40.040 (2)0.072 (2)0.052 (2)0.0103 (18)0.0118 (17)0.0165 (18)
N50.0368 (19)0.060 (2)0.048 (2)0.0127 (17)0.0119 (17)0.0190 (17)
N60.050 (2)0.057 (2)0.059 (2)0.0136 (18)0.0077 (18)0.0059 (18)
N70.047 (2)0.057 (2)0.062 (2)0.0009 (18)0.0069 (18)0.0117 (19)
N80.0355 (19)0.046 (2)0.051 (2)0.0050 (16)0.0086 (16)0.0118 (16)
N90.0387 (19)0.052 (2)0.046 (2)0.0069 (16)0.0086 (16)0.0082 (17)
N100.0346 (19)0.054 (2)0.0464 (19)0.0113 (16)0.0056 (15)0.0086 (17)
N110.0306 (18)0.0447 (19)0.0417 (18)0.0053 (15)0.0082 (15)0.0103 (15)
O10.0296 (14)0.0511 (17)0.0322 (14)0.0038 (13)0.0064 (12)0.0007 (12)
O20.0385 (16)0.0649 (19)0.0454 (17)0.0036 (15)0.0167 (14)0.0044 (15)
O30.0391 (16)0.0647 (19)0.0468 (17)0.0134 (15)0.0049 (15)0.0081 (15)
S10.0502 (7)0.0720 (8)0.0539 (6)0.0008 (6)0.0134 (5)0.0062 (6)
S20.0481 (7)0.0740 (8)0.0474 (6)0.0018 (6)0.0103 (5)0.0020 (6)
C10.024 (2)0.050 (3)0.052 (2)0.0080 (18)0.0129 (18)0.014 (2)
C20.026 (2)0.048 (3)0.051 (2)0.0037 (18)0.0081 (19)0.009 (2)
C30.037 (2)0.066 (3)0.060 (3)0.005 (2)0.014 (2)0.022 (2)
C40.036 (3)0.095 (4)0.060 (3)0.004 (2)0.005 (2)0.019 (3)
C50.042 (2)0.060 (3)0.046 (2)0.014 (2)0.011 (2)0.019 (2)
C60.049 (3)0.092 (3)0.055 (3)0.002 (2)0.013 (2)0.015 (3)
C70.055 (3)0.116 (4)0.056 (3)0.007 (3)0.020 (2)0.017 (3)
C80.060 (3)0.068 (3)0.053 (3)0.016 (2)0.016 (2)0.013 (2)
C90.048 (3)0.075 (3)0.062 (3)0.002 (2)0.014 (2)0.008 (2)
C100.046 (3)0.077 (3)0.060 (3)0.002 (2)0.016 (2)0.012 (2)
C110.038 (3)0.060 (3)0.065 (3)0.001 (2)0.013 (2)0.014 (2)
C120.043 (2)0.066 (3)0.064 (3)0.012 (2)0.015 (2)0.006 (2)
C130.042 (2)0.046 (2)0.047 (2)0.010 (2)0.011 (2)0.018 (2)
C140.048 (3)0.062 (3)0.070 (3)0.008 (2)0.019 (2)0.021 (2)
C150.070 (3)0.072 (3)0.057 (3)0.013 (3)0.024 (2)0.012 (2)
C160.070 (3)0.054 (3)0.045 (3)0.011 (2)0.008 (2)0.009 (2)
C170.059 (3)0.069 (3)0.057 (3)0.008 (2)0.009 (2)0.002 (2)
C180.056 (3)0.077 (3)0.060 (3)0.002 (2)0.022 (2)0.015 (2)
C190.027 (2)0.062 (3)0.052 (2)0.004 (2)0.0068 (19)0.016 (2)
C200.034 (2)0.060 (3)0.055 (3)0.010 (2)0.018 (2)0.010 (2)
C210.034 (2)0.046 (2)0.045 (2)0.0076 (18)0.0099 (18)0.0128 (19)
C220.035 (2)0.066 (3)0.050 (3)0.002 (2)0.011 (2)0.008 (2)
C230.047 (3)0.072 (3)0.059 (3)0.012 (2)0.023 (2)0.013 (2)
C240.063 (3)0.055 (3)0.046 (3)0.007 (2)0.013 (2)0.007 (2)
C250.044 (3)0.068 (3)0.054 (3)0.001 (2)0.011 (2)0.003 (2)
C260.036 (2)0.065 (3)0.053 (3)0.009 (2)0.016 (2)0.008 (2)
Geometric parameters (Å, º) top
Fe1—N12.086 (3)S2—C21.633 (4)
Fe1—O22.100 (2)C3—H70.9300
Fe1—O32.102 (3)C4—H80.9300
Fe1—N22.107 (3)C5—C101.378 (4)
Fe1—O1i2.264 (3)C5—C61.387 (4)
Fe1—O12.281 (2)C6—C71.383 (5)
Cl1—C81.752 (4)C6—H90.9300
Cl2—C161.738 (4)C7—C81.362 (5)
Cl3—C241.745 (4)C7—H100.9300
N1—C11.169 (4)C8—C91.373 (4)
N2—C21.162 (4)C9—C101.372 (4)
N3—C41.285 (4)C9—H110.9300
N3—N41.376 (4)C10—H120.9300
N4—C31.305 (4)C11—H130.9300
N5—C41.351 (4)C12—H140.9300
N5—C31.360 (4)C13—C141.377 (4)
N5—C51.432 (4)C13—C181.384 (4)
N6—C121.306 (4)C14—C151.380 (4)
N6—N71.397 (4)C14—H150.9300
N7—C111.298 (4)C15—C161.357 (5)
N8—C121.352 (4)C15—H160.9300
N8—C111.359 (4)C16—C171.370 (4)
N8—C131.428 (4)C17—C181.378 (4)
N9—C201.300 (4)C17—H170.9300
N9—N101.381 (3)C18—H180.9300
N10—C191.296 (4)C19—H190.9300
N11—C191.361 (4)C20—H200.9300
N11—C201.359 (4)C21—C261.387 (4)
N11—C211.429 (4)C21—C221.387 (4)
O1—Fe1i2.264 (3)C22—C231.374 (4)
O1—H10.869 (10)C22—H210.9300
O1—H20.880 (10)C23—C241.371 (4)
O2—H30.884 (10)C23—H220.9300
O2—H40.881 (10)C24—C251.372 (4)
O3—H50.885 (10)C25—C261.375 (4)
O3—H60.875 (10)C25—H230.9300
S1—C11.632 (4)C26—H240.9300
N1—Fe1—O290.22 (11)C8—C7—H10120.3
N1—Fe1—O389.68 (12)C6—C7—H10120.3
O2—Fe1—O3101.01 (10)C7—C8—C9121.6 (4)
N1—Fe1—N2178.33 (12)C7—C8—Cl1120.2 (3)
O2—Fe1—N289.47 (11)C9—C8—Cl1118.2 (3)
O3—Fe1—N288.76 (11)C8—C9—C10119.0 (4)
N1—Fe1—O1i90.32 (11)C8—C9—H11120.5
O2—Fe1—O1i89.04 (10)C10—C9—H11120.5
O3—Fe1—O1i169.95 (9)C9—C10—C5120.7 (4)
N2—Fe1—O1i91.32 (11)C9—C10—H12119.6
N1—Fe1—O189.79 (10)C5—C10—H12119.6
O2—Fe1—O1167.40 (10)N7—C11—N8111.9 (3)
O3—Fe1—O191.59 (10)N7—C11—H13124.0
N2—Fe1—O190.87 (10)N8—C11—H13124.0
O1i—Fe1—O178.36 (9)N6—C12—N8111.7 (3)
C1—N1—Fe1175.9 (3)N6—C12—H14124.2
C2—N2—Fe1172.4 (3)N8—C12—H14124.2
C4—N3—N4107.0 (3)C14—C13—C18119.2 (4)
C3—N4—N3105.8 (3)C14—C13—N8120.7 (3)
C4—N5—C3102.1 (3)C18—C13—N8120.1 (3)
C4—N5—C5129.6 (3)C15—C14—C13120.4 (4)
C3—N5—C5128.4 (3)C15—C14—H15119.8
C12—N6—N7106.4 (3)C13—C14—H15119.8
C11—N7—N6106.3 (3)C16—C15—C14120.1 (4)
C12—N8—C11103.7 (3)C16—C15—H16120.0
C12—N8—C13128.3 (3)C14—C15—H16120.0
C11—N8—C13127.9 (3)C15—C16—C17120.2 (4)
C20—N9—N10106.8 (3)C15—C16—Cl2120.3 (3)
C19—N10—N9106.9 (3)C17—C16—Cl2119.4 (3)
C19—N11—C20103.5 (3)C16—C17—C18120.3 (4)
C19—N11—C21128.0 (3)C16—C17—H17119.8
C20—N11—C21128.5 (3)C18—C17—H17119.8
Fe1i—O1—Fe1101.64 (9)C17—C18—C13119.7 (4)
Fe1i—O1—H1104 (3)C17—C18—H18120.1
Fe1—O1—H1119 (2)C13—C18—H18120.1
Fe1i—O1—H2110 (3)N10—C19—N11111.4 (3)
Fe1—O1—H2114 (2)N10—C19—H19124.3
H1—O1—H2108 (2)N11—C19—H19124.3
Fe1—O2—H3128 (2)N9—C20—N11111.3 (3)
Fe1—O2—H4125 (2)N9—C20—H20124.3
H3—O2—H4106 (2)N11—C20—H20124.3
Fe1—O3—H5119 (3)C26—C21—C22119.0 (3)
Fe1—O3—H6117 (2)C26—C21—N11120.8 (3)
H5—O3—H6106 (2)C22—C21—N11120.2 (3)
N1—C1—S1179.6 (3)C23—C22—C21120.1 (3)
N2—C2—S2179.7 (3)C23—C22—H21119.9
N4—C3—N5112.2 (3)C21—C22—H21119.9
N4—C3—H7123.9C24—C23—C22120.2 (4)
N5—C3—H7123.9C24—C23—H22119.9
N3—C4—N5112.9 (4)C22—C23—H22119.9
N3—C4—H8123.6C25—C24—C23120.4 (4)
N5—C4—H8123.6C25—C24—Cl3119.9 (3)
C10—C5—C6119.4 (4)C23—C24—Cl3119.7 (3)
C10—C5—N5120.8 (3)C24—C25—C26119.8 (4)
C6—C5—N5119.8 (3)C24—C25—H23120.1
C5—C6—C7119.9 (4)C26—C25—H23120.1
C5—C6—H9120.1C25—C26—C21120.4 (3)
C7—C6—H9120.1C25—C26—H24119.8
C8—C7—C6119.4 (4)C21—C26—H24119.8
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10ii0.87 (3)1.97 (3)2.827 (4)170 (3)
O1—H2···N90.88 (3)1.94 (3)2.819 (4)173 (3)
O2—H3···N7iii0.88 (3)1.98 (3)2.866 (5)178 (3)
O2—H4···N4iv0.88 (2)1.97 (3)2.853 (4)175 (3)
O3—H5···N60.88 (3)1.92 (3)2.802 (4)174 (3)
O3—H6···N3v0.88 (2)1.93 (2)2.803 (4)172 (3)
C3—H7···S2vi0.932.723.624 (5)165
C22—H21···S2ii0.932.873.736 (5)156
C11—H13···S1vii0.932.873.783 (5)167
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y, z; (iv) x, y1, z; (v) x1, y1, z; (vi) x, y+1, z; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Fe2(NCS)4(H2O)6]·6C8H6ClN3
Mr1529.76
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.944 (3), 11.085 (5), 19.912 (10)
α, β, γ (°)105.613 (10), 97.75 (1), 97.932 (7)
V3)1645.1 (12)
Z1
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.25 × 0.21 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.811, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
8642, 5705, 2903
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.076, 0.77
No. of reflections5705
No. of parameters439
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.24

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Fe1—N12.086 (3)Fe1—N22.107 (3)
Fe1—O22.100 (2)Fe1—O1i2.264 (3)
Fe1—O32.102 (3)Fe1—O12.281 (2)
N1—Fe1—O290.22 (11)O3—Fe1—O1i169.95 (9)
N1—Fe1—O389.68 (12)N2—Fe1—O1i91.32 (11)
O2—Fe1—O3101.01 (10)O1i—Fe1—O178.36 (9)
N1—Fe1—N2178.33 (12)Fe1i—O1—Fe1101.64 (9)
O2—Fe1—O1i89.04 (10)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10ii0.87 (3)1.97 (3)2.827 (4)170 (3)
O1—H2···N90.88 (3)1.94 (3)2.819 (4)173 (3)
O2—H3···N7iii0.88 (3)1.98 (3)2.866 (5)178 (3)
O2—H4···N4iv0.88 (2)1.97 (3)2.853 (4)175 (3)
O3—H5···N60.88 (3)1.92 (3)2.802 (4)174 (3)
O3—H6···N3v0.88 (2)1.93 (2)2.803 (4)172 (3)
C3—H7···S2vi0.932.723.624 (5)165
C22—H21···S2ii0.932.873.736 (5)156
C11—H13···S1vii0.932.873.783 (5)167
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y, z; (iv) x, y1, z; (v) x1, y1, z; (vi) x, y+1, z; (vii) x1, y, z.
 

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHsu, H. F., Dong, Y., Shu, L., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc. 121, 5230–5237.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacMurdo, V. L., Zheng, H. & Que, L. Jr (2000). Inorg. Chem. 39, 2254–2255.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNordlund, P. & Eklund, H. (1993). J. Mol. Biol. 232, 123–164.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSazinsky, M. H., Bard, J., Di Donato, A. & Lippard, S. J. (2004). J. Biol. Chem. 279, 30600–30610.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStubbe, J. & Van der Donk, W. A. (1998). Chem. Rev. 98, 705–762.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYoon, S., Kelly, A. E. & Lippard, S. J. (2004). Polyhedron, 23, 2805–2812.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, H., Zang, Y., Dong, Y., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc. 121, 2226–2235.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m996-m997
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds