metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m990-m991

Aqua­{2,2-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}(3-nitro­benzoato)manganese(III)

aDepartment of Chemistry, SN College, Varkala, Kerala 695 145, India, bDepartment of Chemistry, University of Kerala, Thiruvananthapuram, Kerala 695 581, India, and cDepartment of Chemistry, College of William and Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA
*Correspondence e-mail: dasthampi@hotmail.com

(Received 18 June 2008; accepted 27 June 2008; online 5 July 2008)

The title compound, [Mn(C16H14N2O2)(C7H4NO4)(H2O)], is a Jahn–Teller-distorted manganese(III) monomer with an octa­hedral geometry. The tetra­dentate Schiff base accommodates the MnIII ion at the centre of a nearly planar square. The axial positions are occupied by a monodentate carboxyl­ate group and a water mol­ecule. Adjacent monomers inter­act through hydrogen bonding between the noncoordinated C=O group of the carboxyl­ate and the coordinated water mol­ecule to produce chains extending parallel to the b axis.

Related literature

For related literature, see: Christou (1989[Christou, G. (1989). Acc. Chem. Res. 22, 328-335.]); Pecoraro & Hsieh (2000[Pecoraro, V. L. & Hsieh, W.-Y. (2000). The Use of Model Complexes to Elucidate the Structure and Function of Manganese Redox Enzymes, in Metal Ions in Biological Systems, edited by Astrid Sigel & Helmut Sigel, Vol. 37, ch. 14, p. 429. Basel: Marcel-Dekker Inc.]); Yocum & Pecoraro (2004[Yocum, C. F. & Pecoraro, V. L. (2004). Curr. Opin. Chem. Biol. 3, 182-187.]); Zhang & Janiak (2001[Zhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719-720.]); Zouni et al. (2001[Zouni, A., Witt, H. T., Kern, J., Fromme, P., Krauss, N., Sänger, W. & Orth, P. (2001). Nature (London), 409, 739-743.]); Aurangzeb et al. (1994[Aurangzeb, N., Hulme, C. E., McAuliffe, C. A., Pritchard, R. G., Watkinson, M., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193-2195.]); Hulme et al. (1997[Hulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliffe, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805-1814.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C16H14N2O2)(C7H4NO4)(H2O)]

  • Mr = 505.36

  • Monoclinic, P 21 /n

  • a = 6.7297 (1) Å

  • b = 10.5793 (2) Å

  • c = 29.228 (5) Å

  • β = 95.188 (1)°

  • V = 2072.4 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.66 mm−1

  • T = 100 (2) K

  • 0.35 × 0.29 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.245, Tmax = 0.624

  • 21257 measured reflections

  • 3640 independent reflections

  • 3492 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.11

  • 3640 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O1 1.8879 (15)
Mn1—O2 1.9113 (15)
Mn1—N2 1.9946 (18)
Mn1—N1 1.9980 (18)
Mn1—O3 2.1513 (15)
Mn1—O7 2.3250 (16)
O1—Mn1—O2 97.25 (7)
O1—Mn1—N2 171.26 (7)
O2—Mn1—N2 91.15 (7)
O1—Mn1—N1 90.20 (7)
O2—Mn1—N1 172.54 (7)
N2—Mn1—N1 81.42 (7)
O1—Mn1—O3 91.05 (6)
O2—Mn1—O3 89.70 (6)
N2—Mn1—O3 91.40 (7)
N1—Mn1—O3 89.75 (7)
O1—Mn1—O7 90.07 (6)
O2—Mn1—O7 91.54 (6)
N2—Mn1—O7 87.29 (6)
N1—Mn1—O7 88.85 (6)
O3—Mn1—O7 178.21 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H2W⋯O2i 0.77 2.31 3.074 (2) 172
O7—H1W⋯O4ii 0.84 1.89 2.710 (2) 166
Symmetry codes: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and XSHELL (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al. 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Manganese plays a vital role in several biological systems like the oxygen-evolving complex (OEC) of photosystem II (Zouni et al., 2001) and enzymes like superoxide dismutase, catalase, arginase etc. (Yocum & Pecoraro, 2004). The progress in elucidating the structural and functional aspects of the active-sites of these manganese-containing systems, has essentially been connected to the vast number of inorganic model complexes reported during the last few decades (Christou, 1989; Pecoraro & Hsieh, 2000). Recent reports include a few Schiff base complexes of manganese(III) with ancillary carboxylate ligands (Aurangzeb et al., 1994, Hulme et al., 1997; Zhang & Janiak, 2001). Generally, symmetrical N2O2 Schiff base ligands like the salen(H2salen = N,N'-bis(salicylidene)-1,2-diaminoethane), with aromatic rings amenable to π-π overlap, tend to stabilize µ-phenoxy dimers. Here we report a very rare structural type among such complexes, where the trans coordination positions in an octahedral manganese(III) monomer are occupied by a neutral ligand (H2O) and a monodentate carboxylate group (Fig. 1).

In the title compound, the salen ligand holds the manganese(III) ion at the centre of a nearly planar tetragon consisting of two Mn–O bonds [Mn(1)-O(1) = 1.8879 (15) Å and Mn(1)-O(2) = 1.9113 (15) Å] and two Mn–N bonds [Mn(1)-N(1) = 1.9980 (18) Å and Mn(1)-N(2) = 1.9946 (18)Å]. These bond lengths are comparable to those in complexes containing similar MnN2O2 cores (Aurangzeb et al., 1994; Hulme et al., 1997). Jahn-Teller distortion causes an elongation of the Mn–Ocarb [Mn(1)-O(3) = 2.1513 (15) Å] and the Mn–Oaq [Mn(1)-O(7) = 2.3250 (16) Å] axial bonds (Table 1). Chains running parallel to the b-axis arise from H-bonding interactions between the non-coordinated O atom of the carboxylate and coordinated water molecules on adjacent molecules (Fig.2, Table 2).

Related literature top

For related literature, see: Christou (1989); Pecoraro & Hsieh (2000); Yocum & Pecoraro (2004); Zhang & Janiak (2001); Zouni et al. (2001); Aurangzeb et al. (1994); Hulme et al. (1997).

Experimental top

To a solution of Mn(m—NO2C6H4CO2)2.2H2O (1.00 g, 2.36 mmol) and salicylaldehyde (0.58 g, 4.72 mmol) in methanol (40 ml), ethane-1,2-diamine (0.14 g, 2.36 mmol) was added. The solution was stirred for 20 minutes, filtered and left to evaporation in an open conical flask. Brown crystals were deposited in 2–3 days. These were collected by filtration, washed with methanol, and dried in air. Yield of the title compound was 0.82 g (75.50%) based on manganese.

Refinement top

All hydrogen atoms were initially located in the difference map and then were placed in theoretical positions using a riding model for all but the water H atoms which were allowed to rotate freely, O–H = 0.77 and 0.84 Å. Csp2–H = 0.95 Å, Csp3–H = 0.99 Å, Uiso(H) = 1.2Ueq(C,O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and XSHELL (Bruker, 2004); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al. 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP picture (Farrugia, 1997) of the title compound. Displacement ellipsoids have been drawn at the 50% probability level.
[Figure 2] Fig. 2. Mercury (Macrae et al. 2006) ball and stick packing diagram of the title compound showing hydrogen-bonding chains.
Aqua{2,2-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}(3- nitrobenzoato)manganese(III) top
Crystal data top
[Mn(C16H14N2O2)(C7H4NO4)(H2O)]F(000) = 1040
Mr = 505.36Dx = 1.620 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 6.7297 (1) ÅCell parameters from 256 reflections
b = 10.5793 (2) Åθ = 9.7–70.9°
c = 29.228 (5) ŵ = 5.66 mm1
β = 95.188 (1)°T = 100 K
V = 2072.4 (4) Å3Plate, brown
Z = 40.35 × 0.29 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3640 independent reflections
Radiation source: fine-focus sealed tube3492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω and ψ scansθmax = 67.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 77
Tmin = 0.245, Tmax = 0.624k = 1012
21257 measured reflectionsl = 3134
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0418P)2 + 2.1055P]
where P = (Fo2 + 2Fc2)/3
3640 reflections(Δ/σ)max < 0.001
308 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Mn(C16H14N2O2)(C7H4NO4)(H2O)]V = 2072.4 (4) Å3
Mr = 505.36Z = 4
Monoclinic, P21/nCu Kα radiation
a = 6.7297 (1) ŵ = 5.66 mm1
b = 10.5793 (2) ÅT = 100 K
c = 29.228 (5) Å0.35 × 0.29 × 0.09 mm
β = 95.188 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3640 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3492 reflections with I > 2σ(I)
Tmin = 0.245, Tmax = 0.624Rint = 0.046
21257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.11Δρmax = 0.35 e Å3
3640 reflectionsΔρmin = 0.51 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00146 (5)0.54194 (3)0.229187 (11)0.01142 (12)
O10.2188 (2)0.55831 (14)0.18400 (5)0.0155 (3)
O20.1396 (2)0.45279 (14)0.27355 (5)0.0147 (3)
O30.0816 (2)0.36457 (14)0.20036 (5)0.0171 (3)
O40.3542 (2)0.32126 (15)0.16477 (5)0.0197 (4)
O50.2710 (3)0.15274 (18)0.00870 (6)0.0311 (4)
O60.0245 (3)0.12490 (17)0.02568 (5)0.0282 (4)
O70.0810 (2)0.73579 (15)0.26027 (5)0.0190 (3)
H1W0.00520.75450.28180.023*
H2W0.15920.78630.25310.023*
N10.1747 (3)0.63243 (16)0.18849 (6)0.0133 (4)
N20.2479 (3)0.54511 (16)0.27161 (6)0.0129 (4)
N30.0896 (3)0.15170 (18)0.00848 (6)0.0220 (5)
C10.2066 (3)0.5574 (2)0.13906 (8)0.0149 (5)
C20.3747 (3)0.5194 (2)0.11019 (8)0.0171 (5)
H20.49300.49500.12330.020*
C30.3700 (4)0.5173 (2)0.06299 (8)0.0223 (5)
H30.48480.49070.04420.027*
C40.1991 (4)0.5536 (2)0.04252 (8)0.0239 (5)
H40.19760.55190.01010.029*
C50.0333 (4)0.5917 (2)0.06989 (8)0.0202 (5)
H50.08310.61670.05610.024*
C60.0331 (3)0.5945 (2)0.11816 (7)0.0150 (4)
C70.1445 (3)0.63864 (19)0.14441 (7)0.0141 (4)
H70.24640.67480.12810.017*
C80.3601 (3)0.6801 (2)0.21297 (7)0.0159 (5)
H8A0.33620.76220.22780.019*
H8B0.46390.69200.19140.019*
C90.4256 (3)0.5815 (2)0.24879 (7)0.0153 (4)
H9A0.48180.50700.23410.018*
H9B0.52910.61680.27150.018*
C100.2631 (3)0.5163 (2)0.31447 (7)0.0138 (4)
H100.38990.52760.33100.017*
C110.1053 (3)0.46869 (19)0.33948 (7)0.0143 (4)
C120.1515 (4)0.4424 (2)0.38667 (8)0.0173 (5)
H120.28130.46110.40060.021*
C130.0131 (4)0.3906 (2)0.41291 (7)0.0197 (5)
H130.04540.37490.44470.024*
C140.1764 (4)0.3614 (2)0.39192 (8)0.0184 (5)
H140.27340.32580.40980.022*
C150.2250 (3)0.3835 (2)0.34569 (7)0.0157 (4)
H150.35410.36150.33220.019*
C160.0877 (3)0.43777 (19)0.31824 (7)0.0134 (4)
C170.1704 (3)0.32348 (19)0.16688 (7)0.0142 (4)
C180.0387 (3)0.26862 (19)0.12698 (7)0.0140 (4)
C190.1613 (3)0.2428 (2)0.13095 (8)0.0173 (5)
H190.21850.26390.15850.021*
C200.2791 (4)0.1861 (2)0.09498 (8)0.0200 (5)
H200.41510.16760.09840.024*
C210.1988 (4)0.1569 (2)0.05438 (8)0.0197 (5)
H210.27800.11880.02960.024*
C220.0006 (3)0.1846 (2)0.05094 (7)0.0166 (5)
C230.1219 (3)0.2390 (2)0.08636 (7)0.0155 (4)
H230.25860.25560.08300.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0138 (2)0.01245 (19)0.00759 (19)0.00076 (13)0.00106 (13)0.00132 (12)
O10.0173 (8)0.0190 (8)0.0097 (8)0.0005 (6)0.0012 (6)0.0015 (6)
O20.0182 (8)0.0155 (8)0.0099 (7)0.0004 (6)0.0023 (6)0.0019 (6)
O30.0262 (9)0.0129 (8)0.0121 (8)0.0011 (6)0.0018 (6)0.0013 (6)
O40.0206 (9)0.0241 (9)0.0137 (8)0.0041 (7)0.0018 (6)0.0007 (6)
O50.0317 (11)0.0424 (11)0.0198 (9)0.0022 (8)0.0059 (7)0.0056 (8)
O60.0443 (11)0.0275 (9)0.0113 (8)0.0043 (8)0.0053 (7)0.0036 (7)
O70.0211 (9)0.0181 (8)0.0161 (8)0.0047 (6)0.0063 (6)0.0028 (6)
N10.0163 (9)0.0107 (9)0.0128 (9)0.0004 (7)0.0004 (7)0.0000 (7)
N20.0162 (10)0.0096 (9)0.0128 (9)0.0004 (7)0.0003 (7)0.0009 (7)
N30.0357 (13)0.0190 (10)0.0109 (10)0.0011 (9)0.0007 (8)0.0005 (8)
C10.0208 (12)0.0104 (10)0.0130 (11)0.0025 (8)0.0016 (9)0.0014 (8)
C20.0195 (12)0.0153 (11)0.0156 (11)0.0006 (9)0.0025 (9)0.0019 (9)
C30.0275 (13)0.0222 (12)0.0153 (12)0.0000 (10)0.0081 (9)0.0016 (9)
C40.0343 (14)0.0269 (13)0.0096 (11)0.0018 (10)0.0026 (10)0.0007 (9)
C50.0283 (13)0.0180 (12)0.0146 (11)0.0027 (10)0.0036 (9)0.0015 (9)
C60.0224 (12)0.0106 (10)0.0117 (10)0.0024 (9)0.0010 (8)0.0009 (8)
C70.0201 (12)0.0076 (10)0.0151 (11)0.0013 (8)0.0042 (8)0.0016 (8)
C80.0192 (11)0.0124 (11)0.0160 (11)0.0031 (8)0.0008 (9)0.0005 (8)
C90.0142 (11)0.0150 (11)0.0165 (11)0.0004 (9)0.0001 (8)0.0003 (9)
C100.0172 (11)0.0099 (10)0.0131 (11)0.0003 (8)0.0042 (8)0.0022 (8)
C110.0215 (12)0.0105 (10)0.0106 (11)0.0011 (8)0.0011 (8)0.0017 (8)
C120.0244 (12)0.0136 (11)0.0128 (11)0.0005 (9)0.0043 (9)0.0009 (8)
C130.0337 (14)0.0159 (11)0.0088 (10)0.0018 (10)0.0022 (9)0.0000 (8)
C140.0281 (13)0.0134 (11)0.0141 (11)0.0028 (9)0.0046 (9)0.0009 (8)
C150.0201 (11)0.0128 (10)0.0140 (11)0.0004 (9)0.0002 (8)0.0010 (8)
C160.0222 (12)0.0083 (10)0.0093 (10)0.0026 (8)0.0001 (8)0.0011 (8)
C170.0230 (13)0.0092 (10)0.0100 (10)0.0020 (8)0.0008 (8)0.0021 (8)
C180.0215 (12)0.0091 (10)0.0108 (10)0.0015 (8)0.0024 (8)0.0013 (8)
C190.0218 (12)0.0135 (11)0.0166 (11)0.0022 (9)0.0022 (9)0.0004 (8)
C200.0165 (11)0.0191 (12)0.0237 (12)0.0005 (9)0.0024 (9)0.0009 (9)
C210.0260 (13)0.0158 (11)0.0158 (11)0.0019 (9)0.0073 (9)0.0013 (9)
C220.0260 (12)0.0124 (11)0.0108 (10)0.0019 (9)0.0016 (9)0.0003 (8)
C230.0191 (11)0.0129 (10)0.0140 (11)0.0006 (8)0.0018 (8)0.0014 (8)
Geometric parameters (Å, º) top
Mn1—O11.8879 (15)C7—H70.9500
Mn1—O21.9113 (15)C8—C91.515 (3)
Mn1—N21.9946 (18)C8—H8A0.9900
Mn1—N11.9980 (18)C8—H8B0.9900
Mn1—O32.1513 (15)C9—H9A0.9900
Mn1—O72.3250 (16)C9—H9B0.9900
O1—C11.324 (3)C10—C111.434 (3)
O2—C161.331 (3)C10—H100.9500
O3—C171.269 (3)C11—C121.414 (3)
O4—C171.244 (3)C11—C161.426 (3)
O5—N31.220 (3)C12—C131.373 (3)
O6—N31.236 (3)C12—H120.9500
O7—H1W0.8400C13—C141.399 (3)
O7—H2W0.7659C13—H130.9500
N1—C71.288 (3)C14—C151.381 (3)
N1—C81.471 (3)C14—H140.9500
N2—C101.284 (3)C15—C161.400 (3)
N2—C91.472 (3)C15—H150.9500
N3—C221.472 (3)C17—C181.515 (3)
C1—C21.408 (3)C18—C191.389 (3)
C1—C61.421 (3)C18—C231.393 (3)
C2—C31.383 (3)C19—C201.394 (3)
C2—H20.9500C19—H190.9500
C3—C41.397 (4)C20—C211.383 (3)
C3—H30.9500C20—H200.9500
C4—C51.374 (3)C21—C221.378 (3)
C4—H40.9500C21—H210.9500
C5—C61.411 (3)C22—C231.389 (3)
C5—H50.9500C23—H230.9500
C6—C71.439 (3)
O1—Mn1—O297.25 (7)C9—C8—H8A110.5
O1—Mn1—N2171.26 (7)N1—C8—H8B110.5
O2—Mn1—N291.15 (7)C9—C8—H8B110.5
O1—Mn1—N190.20 (7)H8A—C8—H8B108.7
O2—Mn1—N1172.54 (7)N2—C9—C8107.21 (17)
N2—Mn1—N181.42 (7)N2—C9—H9A110.3
O1—Mn1—O391.05 (6)C8—C9—H9A110.3
O2—Mn1—O389.70 (6)N2—C9—H9B110.3
N2—Mn1—O391.40 (7)C8—C9—H9B110.3
N1—Mn1—O389.75 (7)H9A—C9—H9B108.5
O1—Mn1—O790.07 (6)N2—C10—C11125.7 (2)
O2—Mn1—O791.54 (6)N2—C10—H10117.2
N2—Mn1—O787.29 (6)C11—C10—H10117.2
N1—Mn1—O788.85 (6)C12—C11—C16119.4 (2)
O3—Mn1—O7178.21 (6)C12—C11—C10117.3 (2)
C1—O1—Mn1125.44 (14)C16—C11—C10123.1 (2)
C16—O2—Mn1128.63 (14)C13—C12—C11121.5 (2)
C17—O3—Mn1139.29 (14)C13—C12—H12119.2
Mn1—O7—H1W109.5C11—C12—H12119.2
Mn1—O7—H2W133.3C12—C13—C14118.7 (2)
H1W—O7—H2W116.8C12—C13—H13120.6
C7—N1—C8121.31 (19)C14—C13—H13120.6
C7—N1—Mn1124.86 (15)C15—C14—C13121.2 (2)
C8—N1—Mn1113.44 (13)C15—C14—H14119.4
C10—N2—C9120.50 (19)C13—C14—H14119.4
C10—N2—Mn1126.20 (16)C14—C15—C16121.3 (2)
C9—N2—Mn1113.27 (13)C14—C15—H15119.3
O5—N3—O6123.7 (2)C16—C15—H15119.3
O5—N3—C22118.83 (19)O2—C16—C15118.9 (2)
O6—N3—C22117.5 (2)O2—C16—C11123.2 (2)
O1—C1—C2118.6 (2)C15—C16—C11117.8 (2)
O1—C1—C6123.5 (2)O4—C17—O3125.8 (2)
C2—C1—C6117.9 (2)O4—C17—C18118.00 (19)
C3—C2—C1120.9 (2)O3—C17—C18116.17 (19)
C3—C2—H2119.6C19—C18—C23119.6 (2)
C1—C2—H2119.6C19—C18—C17121.01 (19)
C2—C3—C4121.1 (2)C23—C18—C17119.3 (2)
C2—C3—H3119.4C18—C19—C20120.8 (2)
C4—C3—H3119.4C18—C19—H19119.6
C5—C4—C3119.2 (2)C20—C19—H19119.6
C5—C4—H4120.4C21—C20—C19120.3 (2)
C3—C4—H4120.4C21—C20—H20119.9
C4—C5—C6121.0 (2)C19—C20—H20119.9
C4—C5—H5119.5C22—C21—C20118.1 (2)
C6—C5—H5119.5C22—C21—H21121.0
C5—C6—C1119.9 (2)C20—C21—H21121.0
C5—C6—C7117.7 (2)C21—C22—C23123.2 (2)
C1—C6—C7122.4 (2)C21—C22—N3119.2 (2)
N1—C7—C6124.4 (2)C23—C22—N3117.6 (2)
N1—C7—H7117.8C22—C23—C18118.1 (2)
C6—C7—H7117.8C22—C23—H23121.0
N1—C8—C9106.32 (17)C18—C23—H23121.0
N1—C8—H8A110.5
O2—Mn1—O1—C1146.55 (16)C2—C1—C6—C7178.0 (2)
N2—Mn1—O1—C149.5 (5)C8—N1—C7—C6179.76 (19)
N1—Mn1—O1—C133.04 (17)Mn1—N1—C7—C67.9 (3)
O3—Mn1—O1—C156.72 (16)C5—C6—C7—N1171.5 (2)
O7—Mn1—O1—C1121.89 (16)C1—C6—C7—N110.2 (3)
O1—Mn1—O2—C16161.93 (17)C7—N1—C8—C9136.1 (2)
N2—Mn1—O2—C1615.66 (17)Mn1—N1—C8—C937.1 (2)
N1—Mn1—O2—C1621.3 (6)C10—N2—C9—C8145.69 (19)
O3—Mn1—O2—C16107.05 (17)Mn1—N2—C9—C835.9 (2)
O7—Mn1—O2—C1671.66 (17)N1—C8—C9—N245.6 (2)
O1—Mn1—O3—C1778.3 (2)C9—N2—C10—C11174.05 (19)
O2—Mn1—O3—C17175.5 (2)Mn1—N2—C10—C114.1 (3)
N2—Mn1—O3—C1793.3 (2)N2—C10—C11—C12180.0 (2)
N1—Mn1—O3—C1711.9 (2)N2—C10—C11—C165.2 (3)
O7—Mn1—O3—C1750.6 (19)C16—C11—C12—C131.6 (3)
O1—Mn1—N1—C724.13 (18)C10—C11—C12—C13176.7 (2)
O2—Mn1—N1—C7152.7 (5)C11—C12—C13—C141.2 (3)
N2—Mn1—N1—C7158.36 (18)C12—C13—C14—C150.2 (3)
O3—Mn1—N1—C766.92 (18)C13—C14—C15—C161.0 (3)
O7—Mn1—N1—C7114.20 (18)Mn1—O2—C16—C15171.22 (14)
O1—Mn1—N1—C8162.98 (14)Mn1—O2—C16—C1111.9 (3)
O2—Mn1—N1—C820.2 (6)C14—C15—C16—O2177.58 (19)
N2—Mn1—N1—C814.53 (14)C14—C15—C16—C110.5 (3)
O3—Mn1—N1—C8105.98 (14)C12—C11—C16—O2176.14 (19)
O7—Mn1—N1—C872.91 (14)C10—C11—C16—O21.4 (3)
O1—Mn1—N2—C10152.3 (4)C12—C11—C16—C150.8 (3)
O2—Mn1—N2—C1011.72 (18)C10—C11—C16—C15175.50 (19)
N1—Mn1—N2—C10169.01 (19)Mn1—O3—C17—O477.7 (3)
O3—Mn1—N2—C10101.45 (18)Mn1—O3—C17—C18104.5 (2)
O7—Mn1—N2—C1079.77 (18)O4—C17—C18—C19165.9 (2)
O1—Mn1—N2—C929.4 (5)O3—C17—C18—C1912.1 (3)
O2—Mn1—N2—C9166.56 (14)O4—C17—C18—C2311.5 (3)
N1—Mn1—N2—C912.70 (14)O3—C17—C18—C23170.54 (19)
O3—Mn1—N2—C976.84 (14)C23—C18—C19—C200.8 (3)
O7—Mn1—N2—C9101.95 (14)C17—C18—C19—C20176.6 (2)
Mn1—O1—C1—C2154.51 (16)C18—C19—C20—C211.2 (3)
Mn1—O1—C1—C626.4 (3)C19—C20—C21—C220.4 (3)
O1—C1—C2—C3179.8 (2)C20—C21—C22—C230.7 (3)
C6—C1—C2—C30.6 (3)C20—C21—C22—N3178.6 (2)
C1—C2—C3—C40.5 (4)O5—N3—C22—C21165.6 (2)
C2—C3—C4—C50.1 (4)O6—N3—C22—C2114.7 (3)
C3—C4—C5—C60.1 (4)O5—N3—C22—C2312.4 (3)
C4—C5—C6—C10.0 (3)O6—N3—C22—C23167.3 (2)
C4—C5—C6—C7178.4 (2)C21—C22—C23—C181.0 (3)
O1—C1—C6—C5179.4 (2)N3—C22—C23—C18178.95 (18)
C2—C1—C6—C50.3 (3)C19—C18—C23—C220.3 (3)
O1—C1—C6—C71.1 (3)C17—C18—C23—C22177.69 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H2W···O2i0.772.313.074 (2)172
O7—H1W···O4ii0.841.892.710 (2)166
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C16H14N2O2)(C7H4NO4)(H2O)]
Mr505.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)6.7297 (1), 10.5793 (2), 29.228 (5)
β (°) 95.188 (1)
V3)2072.4 (4)
Z4
Radiation typeCu Kα
µ (mm1)5.66
Crystal size (mm)0.35 × 0.29 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.245, 0.624
No. of measured, independent and
observed [I > 2σ(I)] reflections
21257, 3640, 3492
Rint0.046
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.11
No. of reflections3640
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.51

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and XSHELL (Bruker, 2004), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al. 2006), SHELXL97 (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—O11.8879 (15)Mn1—N11.9980 (18)
Mn1—O21.9113 (15)Mn1—O32.1513 (15)
Mn1—N21.9946 (18)Mn1—O72.3250 (16)
O1—Mn1—O297.25 (7)N2—Mn1—O391.40 (7)
O1—Mn1—N2171.26 (7)N1—Mn1—O389.75 (7)
O2—Mn1—N291.15 (7)O1—Mn1—O790.07 (6)
O1—Mn1—N190.20 (7)O2—Mn1—O791.54 (6)
O2—Mn1—N1172.54 (7)N2—Mn1—O787.29 (6)
N2—Mn1—N181.42 (7)N1—Mn1—O788.85 (6)
O1—Mn1—O391.05 (6)O3—Mn1—O7178.21 (6)
O2—Mn1—O389.70 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H2W···O2i0.772.313.074 (2)171.9
O7—H1W···O4ii0.841.892.710 (2)165.5
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We acknowledge the authorities of SN College, Varkala, Kerala, India, for providing the facilities for this research. We also acknowledge the NSF (CHE-0443345) and the College of William and Mary for the purchase of the X-ray equipment.

References

First citationAurangzeb, N., Hulme, C. E., McAuliffe, C. A., Pritchard, R. G., Watkinson, M., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193–2195.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristou, G. (1989). Acc. Chem. Res. 22, 328–335.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliffe, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805–1814.  CSD CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPecoraro, V. L. & Hsieh, W.-Y. (2000). The Use of Model Complexes to Elucidate the Structure and Function of Manganese Redox Enzymes, in Metal Ions in Biological Systems, edited by Astrid Sigel & Helmut Sigel, Vol. 37, ch. 14, p. 429. Basel: Marcel-Dekker Inc.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYocum, C. F. & Pecoraro, V. L. (2004). Curr. Opin. Chem. Biol. 3, 182–187.  Web of Science CrossRef Google Scholar
First citationZhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719–720.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZouni, A., Witt, H. T., Kern, J., Fromme, P., Krauss, N., Sänger, W. & Orth, P. (2001). Nature (London), 409, 739–743.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m990-m991
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds