organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2-(2,6-Di­chloro­benz­yl­oxy)-2-(2-fur­yl)eth­yl]-1H-benzimidazole

aDepartment of Chemistry, Zonguldak Karaelmas University, 67100 Zonguldak, Turkey, bDepartment of Chemistry, Southampton University, Southampton SO17 1BJ, England, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 25 June 2008; accepted 4 July 2008; online 9 July 2008)

In the mol­ecule of the title compound, C20H16Cl2N2O2, the planar benzimidazole ring system is oriented with respect to the furan and dichloro­benzene rings at dihedral angles of 53.39 (6) and 31.04 (5)°, respectively. In the crystal structure, inter­molecular C—H⋯Cl hydrogen bonds link the mol­ecules into centrosymmetric R22(8) dimers. These dimers are connected via a C—H⋯π contact between the benzimidazole and the furan rings, and ππ contacts between the benz­imidazole and dichloro­benzene ring systems [centroid–centroid distances = 3.505 (1), 3.567 (1), 3.505 (1) and 3.567 (1) Å].

Related literature

For general background, see: Brammer & Feczko (1988[Brammer, K. W. & Feczko, J. M. (1988). Antifungal Drugs, edited by V. St Georgiev, pp. 561-563. New York: NY Acad. Sci.]); Özel Güven et al. (2007a[Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233-2236.],b[Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731-734.]). For related literature, see: Song & Shin (1998[Song, H. & Shin, H.-S. (1998). Acta Cryst. C54, 1675-1677.]); Freer et al. (1986[Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350-1352.]); Peeters et al. (1996[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225-2229.]); Peeters et al. (1979a[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979a). Acta Cryst. B35, 2461-2464.],b[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979b). Bull. Soc. Chim. Belg. 88, 265-272.]); Caira et al. (2004[Caira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601-611.]). For ring motif details, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16Cl2N2O2

  • Mr = 387.25

  • Orthorhombic, P b c a

  • a = 12.7720 (3) Å

  • b = 12.9761 (2) Å

  • c = 21.9732 (5) Å

  • V = 3641.63 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 120 (2) K

  • 0.50 × 0.40 × 0.20 mm

Data collection
  • Bruker Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.835, Tmax = 0.929

  • 27000 measured reflections

  • 4181 independent reflections

  • 3311 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.122

  • S = 1.10

  • 4181 reflections

  • 300 parameters

  • All H-atom parameters refined

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯Cl2i 1.00 (2) 2.76 (2) 3.7470 (19) 172.0 (15)
C1—H1⋯Cg1ii 0.95 (2) 2.533 (19) 3.441 (2) 158.8 (16)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In recent years, there has been increasing interest in synthesis of heterocyclic compounds having biological and commercial importances. Clotrimazole (Song & Shin, 1998), econazole (Freer et al., 1986), ketoconazole (Peeters et al., 1979a) and miconazole (Peeters et al., 1979b) are well-known imidazole ring containing, while itraconazole (Peeters et al., 1996) and fluconazole (Caira et al., 2004) are 1H-1,2,4-triazole ring containing, azole derivatives. They have been developed for clinical uses as antifungal agents (Brammer & Feczko, 1988). Lately, similar structures to miconazole and econazole have been reported to show antibacterial activity more than antifungal activity (Özel Güven et al., 2007a,b). In these structures, benzimidazole ring has been found in place of the imidazole ring of miconazole and econazole. We report herein the crystal structure of title benzimidazole derivative.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are generally within normal ranges. The planar benzimidazole ring system is oriented with respect to the furan and dichlorobenzene rings at dihedral angles of 53.39 (6)° and 31.04 (5)°, respectively. Atoms C8, C9 and C14 are 0.063 (2), 0.065 (2) and -0.039 (2) Å away from the ring planes of benzimidazole, furan and dichlorobenzene, respectively. So, they are coplanar with the adjacent rings. The N1-C8-C9, C9-O2-C14 and C8-C9-C10, O2-C9-C10 bond angles are nearly equal, while O2-C9-C8 and O2-C14-C15 bond angles are different from each other. The N1-C1-N2, N2-C2-C7 and C2-C7-C6 bond angles are enlarged, while C5-C6-C7 bond angle is narrowed. In dichlorobenzene ring, the C15-C16-C17 and C15-C20-C19 bond angles are enlarged, while C16-C15-C20 bond angle is highly narrowed (Table 1), probably due to the intermolecular C-H···Cl hydrogen bonds (Table 2).

In the crystal structure, intermolecular weak C-H···Cl hydrogen bonds (Table 2) link the molecules to form a R22(8) ring motif (Fig. 2) (Bernstein et al., 1995), in which they may be effective in the stabilization of the structure. The C—H···π contact (Table 2) between the benzimidazole and the furan rings and ππ contacts between the benzimidazole and dichlorobenzene ring systems Cg2···Cg4i, Cg3···Cg4i, Cg4···Cg2ii and Cg4···Cg3ii [symmetry codes: (i) -1/2 + x, 1/2 - y, 1 - z; (ii) 1/2 + x, 1/2 - y, 1 - z, where Cg2, Cg3 and Cg4 are centroids of the rings (N1/N2/C1/C2/C7), (C2-C7) and (C15-C20), respectively] further stabilize the structure, with centroid–centroid distances of 3.505 (1), 3.567 (1), 3.505 (1) and 3.567 (1) Å, respectively.

Related literature top

For general background, see: Brammer & Feczko (1988); Özel Güven et al. (2007a,b). For related literature, see: Song & Shin (1998); Freer et al. (1986); Peeters et al. (1996); Peeters et al. (1979a,b); Caira et al. (2004). For ring motif details, see: Bernstein et al. (1995).

Experimental top

The title compound, was synthesized by the reaction of 2-(1H-benzimidazol -1-yl)-1-(furan-2-yl)ethanol (Özel Güven et al., 2007b) with NaH and appropriate benzyl halide. A solution of alcohol (150 mg, 0.657 mmol) in DMF (1.5 ml) was added to NaH (19.7 mg, 0.821 mmol) in small fractions. The appropriate benzyl halide (158 mg, 0.657 mmol) in DMF (0.8 ml) was then added dropwise. The mixture was stirred at room temperature for 2 h, and the excess hydride was decomposed with a small amount of methyl alcohol. After evaporation to dryness under reduced pressure, the crude residue was suspended with water and extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate, and then evaporated to dryness. The crude residue was purified by chromatography on a silica-gel column using chloroform-methanol as eluent. Crystals suitable for X-ray analysis were obtained by the recrystallization of the ether from a mixture of hexane/ethyl acetate (1:2) (yield; 124 mg, 49%).

Refinement top

H atoms were located in difference syntheses and refined isotropically [C—H = 0.92 (2)–1.03 (2) Å; Uiso(H) = 0.015 (4)–0.037 (6) Å2].

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
1-[2-(2,6-Dichlorobenzyloxy)-2-(2-furyl)ethyl]-1H-benzimidazole top
Crystal data top
C20H16Cl2N2O2F(000) = 1600
Mr = 387.25Dx = 1.413 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4594 reflections
a = 12.7720 (3) Åθ = 2.9–27.5°
b = 12.9761 (2) ŵ = 0.37 mm1
c = 21.9732 (5) ÅT = 120 K
V = 3641.63 (13) Å3Block, colorless
Z = 80.50 × 0.40 × 0.20 mm
Data collection top
Bruker Nonius KappaCCD
diffractometer
4181 independent reflections
Radiation source: fine-focus sealed tube3311 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 9.091 pixels mm-1θmax = 27.8°, θmin = 3.1°
ϕ and ω scansh = 1316
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1416
Tmin = 0.835, Tmax = 0.929l = 2822
27000 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047All H-atom parameters refined
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0688P)2 + 0.7891P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
4181 reflectionsΔρmax = 0.50 e Å3
300 parametersΔρmin = 0.49 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0141 (10)
Crystal data top
C20H16Cl2N2O2V = 3641.63 (13) Å3
Mr = 387.25Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.7720 (3) ŵ = 0.37 mm1
b = 12.9761 (2) ÅT = 120 K
c = 21.9732 (5) Å0.50 × 0.40 × 0.20 mm
Data collection top
Bruker Nonius KappaCCD
diffractometer
4181 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3311 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.929Rint = 0.048
27000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.122All H-atom parameters refined
S = 1.10Δρmax = 0.50 e Å3
4181 reflectionsΔρmin = 0.49 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.52705 (4)0.15868 (4)0.27568 (2)0.03062 (16)
Cl20.46363 (3)0.33374 (4)0.49707 (2)0.02746 (16)
O10.44665 (9)0.10157 (10)0.42074 (6)0.0231 (3)
O20.36998 (8)0.13809 (9)0.42664 (5)0.0192 (3)
N10.24117 (10)0.14633 (11)0.53080 (7)0.0183 (3)
N20.22763 (11)0.31228 (12)0.56340 (7)0.0216 (3)
C10.21768 (13)0.24739 (13)0.51763 (9)0.0205 (4)
H10.1946 (14)0.2656 (15)0.4777 (9)0.018 (5)*
C20.26218 (12)0.24900 (13)0.61103 (8)0.0186 (4)
C30.28517 (13)0.27431 (15)0.67109 (9)0.0241 (4)
H30.2801 (14)0.3425 (15)0.6832 (9)0.018 (5)*
C40.31590 (13)0.19444 (16)0.70928 (10)0.0270 (4)
H40.3323 (15)0.2095 (16)0.7491 (10)0.026 (5)*
C50.32404 (14)0.09079 (16)0.68881 (9)0.0269 (4)
H50.3477 (15)0.0361 (15)0.7160 (9)0.026 (5)*
C60.30207 (13)0.06387 (14)0.62937 (9)0.0223 (4)
H60.3068 (15)0.0068 (17)0.6154 (9)0.028 (5)*
C70.27122 (12)0.14474 (13)0.59120 (8)0.0186 (4)
C80.24218 (13)0.05901 (14)0.48853 (9)0.0198 (4)
H810.1896 (15)0.0733 (16)0.4578 (9)0.026 (5)*
H820.2223 (14)0.0048 (16)0.5104 (8)0.020 (5)*
C90.34849 (12)0.04456 (13)0.46028 (8)0.0178 (4)
H90.3996 (14)0.0367 (14)0.4940 (8)0.015 (4)*
C100.35358 (12)0.05012 (13)0.42090 (8)0.0190 (4)
C110.28836 (14)0.09792 (15)0.38168 (9)0.0249 (4)
H110.2189 (17)0.0773 (17)0.3727 (10)0.035 (6)*
C120.34340 (15)0.18372 (15)0.35581 (9)0.0266 (4)
H120.3178 (16)0.2308 (17)0.3271 (10)0.031 (6)*
C130.43807 (15)0.18196 (15)0.38007 (9)0.0252 (4)
H130.4966 (17)0.2303 (18)0.3736 (9)0.032 (6)*
C140.47740 (13)0.14762 (14)0.41337 (9)0.0206 (4)
H1410.5151 (15)0.1398 (14)0.4508 (10)0.019 (5)*
H1420.4958 (16)0.0907 (17)0.3863 (10)0.030 (5)*
C150.49591 (12)0.25242 (13)0.38536 (8)0.0177 (4)
C160.51955 (13)0.26642 (14)0.32382 (8)0.0204 (4)
C170.53897 (13)0.36388 (15)0.29854 (9)0.0243 (4)
H170.5544 (16)0.3651 (17)0.2524 (11)0.037 (6)*
C180.53539 (14)0.45094 (15)0.33540 (10)0.0263 (4)
H180.5515 (16)0.5199 (17)0.3202 (10)0.031 (6)*
C190.51163 (13)0.44195 (14)0.39651 (9)0.0232 (4)
H190.5110 (15)0.5037 (16)0.4233 (9)0.025 (5)*
C200.49238 (13)0.34367 (14)0.42002 (8)0.0190 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0346 (3)0.0290 (3)0.0282 (3)0.00275 (18)0.0013 (2)0.0095 (2)
Cl20.0261 (2)0.0342 (3)0.0221 (3)0.00255 (17)0.00426 (17)0.00402 (19)
O10.0216 (6)0.0225 (7)0.0253 (7)0.0020 (5)0.0008 (5)0.0037 (5)
O20.0150 (5)0.0167 (6)0.0258 (7)0.0010 (4)0.0025 (5)0.0039 (5)
N10.0166 (7)0.0175 (8)0.0208 (8)0.0010 (5)0.0026 (6)0.0011 (6)
N20.0190 (7)0.0190 (8)0.0268 (9)0.0019 (6)0.0037 (6)0.0013 (6)
C10.0179 (8)0.0191 (9)0.0246 (10)0.0015 (7)0.0028 (7)0.0036 (8)
C20.0132 (7)0.0181 (9)0.0246 (10)0.0007 (6)0.0035 (7)0.0012 (7)
C30.0175 (8)0.0240 (10)0.0308 (11)0.0001 (7)0.0023 (7)0.0072 (8)
C40.0187 (8)0.0375 (11)0.0249 (11)0.0014 (7)0.0022 (7)0.0044 (9)
C50.0209 (8)0.0288 (10)0.0309 (11)0.0035 (7)0.0013 (8)0.0042 (9)
C60.0189 (8)0.0202 (9)0.0279 (10)0.0018 (7)0.0008 (7)0.0019 (8)
C70.0125 (7)0.0208 (9)0.0224 (9)0.0002 (6)0.0021 (7)0.0005 (7)
C80.0180 (8)0.0184 (9)0.0228 (10)0.0029 (6)0.0009 (7)0.0012 (7)
C90.0175 (8)0.0162 (8)0.0198 (9)0.0010 (6)0.0004 (7)0.0017 (7)
C100.0189 (8)0.0187 (9)0.0194 (9)0.0001 (6)0.0034 (7)0.0029 (7)
C110.0235 (9)0.0273 (10)0.0240 (10)0.0006 (7)0.0010 (7)0.0003 (8)
C120.0321 (10)0.0253 (10)0.0224 (10)0.0033 (8)0.0019 (8)0.0047 (8)
C130.0304 (9)0.0216 (9)0.0235 (10)0.0019 (7)0.0060 (8)0.0044 (8)
C140.0154 (8)0.0179 (9)0.0285 (11)0.0003 (6)0.0027 (7)0.0026 (8)
C150.0118 (7)0.0182 (9)0.0233 (9)0.0002 (6)0.0006 (7)0.0012 (7)
C160.0166 (8)0.0214 (9)0.0232 (10)0.0002 (6)0.0015 (7)0.0027 (7)
C170.0214 (9)0.0286 (10)0.0229 (11)0.0012 (7)0.0019 (7)0.0061 (8)
C180.0243 (9)0.0203 (10)0.0344 (11)0.0028 (7)0.0040 (8)0.0076 (8)
C190.0198 (8)0.0188 (9)0.0311 (11)0.0009 (7)0.0033 (7)0.0026 (8)
C200.0144 (7)0.0225 (9)0.0200 (9)0.0006 (6)0.0009 (7)0.0012 (7)
Geometric parameters (Å, º) top
Cl1—C161.7557 (19)C8—H820.99 (2)
Cl2—C201.7373 (19)C9—C81.505 (2)
O1—C101.363 (2)C9—C101.504 (2)
O1—C131.378 (2)C9—H90.992 (18)
O2—C91.4474 (19)C10—C111.350 (2)
O2—C141.4081 (19)C11—C121.434 (3)
N1—C11.376 (2)C11—H110.95 (2)
N1—C71.382 (2)C12—H120.94 (2)
N1—C81.465 (2)C13—C121.322 (3)
N2—C11.318 (2)C13—H130.99 (2)
C1—H10.95 (2)C14—H1410.96 (2)
C2—N21.401 (2)C14—H1420.98 (2)
C2—C31.391 (3)C15—C141.511 (2)
C2—C71.426 (2)C15—C161.397 (3)
C3—H30.926 (19)C15—C201.409 (2)
C4—C31.390 (3)C17—C161.403 (3)
C4—C51.422 (3)C17—C181.391 (3)
C4—H40.92 (2)C17—H171.03 (2)
C5—H50.98 (2)C18—H180.98 (2)
C6—C51.381 (3)C19—C181.382 (3)
C6—C71.400 (2)C19—H190.99 (2)
C6—H60.97 (2)C20—C191.398 (2)
C8—H810.97 (2)
C10—O1—C13107.64 (14)C10—C9—H9108.5 (10)
C14—O2—C9111.36 (12)O1—C10—C9116.05 (14)
C1—N1—C7106.07 (15)C11—C10—O1108.15 (15)
C1—N1—C8127.26 (16)C11—C10—C9135.73 (15)
C7—N1—C8126.52 (15)C10—C11—C12107.90 (16)
C1—N2—C2103.05 (15)C10—C11—H11125.6 (14)
N1—C1—H1119.8 (12)C12—C11—H11126.5 (14)
N2—C1—N1115.30 (17)C11—C12—H12127.0 (13)
N2—C1—H1124.9 (12)C13—C12—C11105.97 (18)
N2—C2—C7110.68 (15)C13—C12—H12127.0 (13)
C3—C2—N2129.52 (17)O1—C13—H13121.0 (12)
C3—C2—C7119.78 (16)C12—C13—O1110.33 (17)
C4—C3—C2117.14 (18)C12—C13—H13128.6 (12)
C4—C3—H3123.9 (12)O2—C14—C15108.41 (13)
C2—C3—H3118.9 (12)O2—C14—H141107.6 (12)
C3—C4—C5122.33 (19)O2—C14—H142107.1 (12)
C3—C4—H4118.7 (13)C15—C14—H141111.5 (12)
C5—C4—H4119.0 (13)C15—C14—H142113.3 (13)
C4—C5—H5121.1 (12)H141—C14—H142108.7 (17)
C6—C5—C4121.58 (18)C16—C15—C20114.88 (15)
C6—C5—H5117.3 (12)C16—C15—C14123.02 (16)
C5—C6—C7115.74 (17)C20—C15—C14122.09 (16)
C5—C6—H6121.8 (12)C15—C16—C17122.57 (16)
C7—C6—H6122.5 (12)C15—C16—Cl1119.42 (13)
N1—C7—C6131.67 (17)C17—C16—Cl1118.00 (14)
N1—C7—C2104.89 (14)C16—C17—H17115.9 (12)
C6—C7—C2123.42 (17)C18—C17—C16119.71 (18)
N1—C8—C9111.46 (14)C18—C17—H17124.4 (12)
N1—C8—H81106.7 (12)C17—C18—H18122.6 (13)
N1—C8—H82109.6 (11)C19—C18—C17120.31 (18)
C9—C8—H81111.2 (12)C19—C18—H18117.1 (13)
C9—C8—H82109.1 (11)C18—C19—C20118.35 (18)
H81—C8—H82108.7 (16)C18—C19—H19120.6 (12)
O2—C9—C10112.52 (14)C20—C19—H19121.0 (12)
O2—C9—C8106.10 (13)C15—C20—Cl2118.12 (13)
O2—C9—H9110.0 (10)C19—C20—C15124.17 (17)
C8—C9—H9107.4 (10)C19—C20—Cl2117.71 (14)
C10—C9—C8112.22 (14)
C13—O1—C10—C110.53 (19)C5—C6—C7—C20.1 (2)
C13—O1—C10—C9176.90 (14)O2—C9—C8—N161.67 (18)
C10—O1—C13—C121.1 (2)O2—C9—C10—C1181.3 (2)
C14—O2—C9—C1074.57 (17)O2—C9—C10—O195.24 (17)
C14—O2—C9—C8162.36 (15)C8—C9—C10—C1138.3 (3)
C9—O2—C14—C15173.07 (14)C8—C9—C10—O1145.19 (15)
C7—N1—C1—N20.99 (19)C10—C9—C8—N1175.07 (14)
C8—N1—C1—N2176.72 (15)O1—C10—C11—C120.1 (2)
C1—N1—C7—C20.65 (16)C9—C10—C11—C12176.83 (18)
C1—N1—C7—C6178.95 (17)C10—C11—C12—C130.8 (2)
C8—N1—C7—C2176.41 (14)O1—C13—C12—C111.1 (2)
C8—N1—C7—C65.3 (3)C16—C15—C14—O2108.33 (18)
C1—N1—C8—C990.6 (2)C20—C15—C14—O272.8 (2)
C7—N1—C8—C984.3 (2)C14—C15—C16—Cl10.8 (2)
C2—N2—C1—N10.85 (18)C14—C15—C16—C17178.50 (15)
C3—C2—N2—C1179.27 (17)C20—C15—C16—Cl1179.66 (11)
C7—C2—N2—C10.38 (17)C20—C15—C16—C170.4 (2)
N2—C2—C3—C4178.50 (16)C14—C15—C20—Cl21.0 (2)
C7—C2—C3—C40.3 (2)C14—C15—C20—C19178.26 (15)
N2—C2—C7—N10.18 (17)C16—C15—C20—Cl2179.96 (12)
N2—C2—C7—C6178.66 (15)C16—C15—C20—C190.7 (2)
C3—C2—C7—N1178.83 (14)C18—C17—C16—Cl1178.99 (13)
C3—C2—C7—C60.3 (2)C18—C17—C16—C150.3 (3)
C5—C4—C3—C20.0 (3)C16—C17—C18—C190.8 (3)
C3—C4—C5—C60.3 (3)C20—C19—C18—C170.5 (3)
C7—C6—C5—C40.2 (2)Cl2—C20—C19—C18179.51 (13)
C5—C6—C7—N1178.12 (16)C15—C20—C19—C180.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···Cl2i1.00 (2)2.76 (2)3.7470 (19)172.0 (15)
C1—H1···Cg1ii0.95 (2)2.533 (19)3.441 (2)158.8 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC20H16Cl2N2O2
Mr387.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)12.7720 (3), 12.9761 (2), 21.9732 (5)
V3)3641.63 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.50 × 0.40 × 0.20
Data collection
DiffractometerBruker Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.835, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
27000, 4181, 3311
Rint0.048
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.122, 1.10
No. of reflections4181
No. of parameters300
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.50, 0.49

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Selected bond angles (º) top
C14—O2—C9111.36 (12)N1—C8—C9111.46 (14)
N2—C1—N1115.30 (17)O2—C9—C10112.52 (14)
N2—C2—C7110.68 (15)O2—C9—C8106.10 (13)
C5—C6—C7115.74 (17)C10—C9—C8112.22 (14)
C6—C7—C2123.42 (17)O2—C14—C15108.41 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···Cl2i1.00 (2)2.76 (2)3.7470 (19)172.0 (15)
C1—H1···Cg1ii0.95 (2)2.533 (19)3.441 (2)158.8 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y1/2, z.
 

Acknowledgements

The authors acknowledge the Zonguldak Karaelmas University Research Fund (grant No. 2004-13-02-16).

References

First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrammer, K. W. & Feczko, J. M. (1988). Antifungal Drugs, edited by V. St Georgiev, pp. 561–563. New York: NY Acad. Sci.  Google Scholar
First citationCaira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601–611.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFreer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233–2236.  Web of Science PubMed Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731–734.  Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979a). Acta Cryst. B35, 2461–2464.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1979b). Bull. Soc. Chim. Belg. 88, 265–272.  CrossRef CAS Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2225–2229.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, H. & Shin, H.-S. (1998). Acta Cryst. C54, 1675–1677.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds