metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[manganese(II)-(μ2-3,5-di-2-pyridyl-1,2,4-triazol­ato)-μ2-formato]

aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.com.cn

(Received 8 July 2008; accepted 22 July 2008; online 26 July 2008)

Owing to the presence of crystallographic twofold rotation axes (site symmetry 2, Wyckoff letters e and f), the asymmetric unit of the title compound, [Mn(C12H8N5)(CHO2)]n, contains one-half of an MnII cation, one-half of a bpt anion (Hbpt is 3,5-di-2-pyridyl-4H-1,2,4-triazole) and one-half of a formate anion. The bpt and formate ligands occupy the same C2 symmetry, while the MnII ion resides on another crystallographic twofold rotation axis. Each bpt ligand acts as a cis-bis-chelate to ligate two MnII ions into a one-dimensional chain running along the crystallographic 41 screw axis. Adjacent MnII ions are further bridged by a μ2-formate ligand, completing the distorted octa­hedral coordination geometry of the cation.

Related literature

For related literature, see: Zhang (2005[Zhang, X.-M. (2005). Coord. Chem. Rev. 249, 1201-1219.]); Chen & Tong (2007[Chen, X.-M. & Tong, M.-L. (2007). Acc. Chem. Res. 40, 162-170.]). For related structures, see: Cheng et al. (2007a[Cheng, L., Zhang, W.-X., Ye, B.-H., Lin, J.-B. & Chen, X.-M. (2007a). Inorg. Chem. 46, 1135-1143.],b[Cheng, L., Zhang, W.-X., Ye, B.-H., Lin, J.-B. & Chen, X.-M. (2007b). Eur. J. Inorg. Chem. pp. 2668-2676.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C12H8N5)(CHO2)]

  • Mr = 322.20

  • Tetragonal, I 41 /a c d

  • a = 19.124 (5) Å

  • c = 14.9120 (4) Å

  • V = 5454 (2) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 293 (2) K

  • 0.15 × 0.09 × 0.06 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.867, Tmax = 0.944

  • 14412 measured reflections

  • 1346 independent reflections

  • 1225 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.121

  • S = 1.09

  • 1346 reflections

  • 97 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, solvothermal in situ ligand reactions have been a rapidly growing field concerning with the formation of in situ generated mixed-ligand coordination polymers that can not be easily obtained: a. one-pot synthesis of some unusual organic ligands that are inaccessible or not easily obtainable via conventional methods, and b. which are very promising as a bridge between coordination and synthetic organic chemistry (Zhang, 2005; Chen & Tong, 2007). During our research of the reaction mechanisms of different organonitriles with hydrazine hydrate (Cheng et al., 2007a,b), a new one-dimensional mixed-ligand polymeric manganese(II) complex, [Mn(bpt)0.5(HCOO)0.5]n (Hbpt = 3,5-bis(2-pyridyl)-4H-1,2,4-triazole) has been synthesized and characterized by single-crystal X-ray diffraction.

The asymmetric unit of the title compound contains half a MnII cation, half a bpt and half a formato anion. In the compound, the MnII ion lies on a twofold rotation axis, at position (x, 1/4 + x, 1/8), Wyckoff letter f. Neighboring twofold rotation axes in the high symmetric space group I 41/a 2/c 2/d, running through atoms C7, H7A in the formato anion and through atom N3 of the triazole group, at positions (3/4, 3/4 + x, 0) and (x, 0, 1/4), respectively, both with Wyckoff letter e. The MnII ion displays a slightly distorted octahedral geometry, being surrounded by two chelating bpt ligands and two oxygen atoms from two µ2-formato ligands, linking the half molecules in the complex to a one-dimensional chain extending along the crystallographic 41-screw axis. The shortest Mn···Mn distance in the chain is 4.366 (5) Å.

Related literature top

For related literature, see: Zhang (2005); Chen & Tong (2007). For related structures, see: Cheng et al. (2007a,b)

Experimental top

A mixture of 4-cyanopyridine (0.416 g, 4.0 mmol), 80% hydrazine hydrate (2 ml), Mn(HCOO)2.2H2O (0.181 g, 1 mmol) and DMF (6 ml) was heated in a 15-ml Teflon-lined autoclave at 180° for 3 days, followed by slow cooling (5° h-1) to room temperature. The resulting mixture was washed with water, and pale-yellow block crystals were collected and dried in air [yield 1.0% (3.2 mg) based on MnII].

Refinement top

H atoms were positioned geometrically and refined using a riding model with constraint distances C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The one-dimensional chain of the title compound with 30% thermal ellipsoids. All the hydrogen atoms are omitted for clarity. Symmetry codes: a: 5/4 - x, -1/4 - y, 1/4 - z; b: 3/2 - x, y, 1/2 - z; c: 1/4 + x, -1/4 - y, -1/4 + z; d: x, -y, 1/2 - z.
catena-Poly[manganese(II)-(µ2-3,5-di-2-pyridyl-1,2,4-triazolato)-µ2- formato] top
Crystal data top
[Mn(C12H8N5)(CHO2)]Dx = 1.570 Mg m3
Mr = 322.20Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/acdCell parameters from 810 reflections
Hall symbol: -I 4bd 2cθ = 2.5–28.0°
a = 19.124 (5) ŵ = 0.98 mm1
c = 14.9120 (4) ÅT = 293 K
V = 5454 (2) Å3Needle-like, yellow
Z = 160.15 × 0.09 × 0.06 mm
F(000) = 2608
Data collection top
Bruker APEX CCD
diffractometer
1346 independent reflections
Radiation source: fine-focus sealed tube1225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 2318
Tmin = 0.867, Tmax = 0.944k = 2323
14412 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0491P)2 + 25.4234P]
where P = (Fo2 + 2Fc2)/3
1346 reflections(Δ/σ)max < 0.001
97 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Mn(C12H8N5)(CHO2)]Z = 16
Mr = 322.20Mo Kα radiation
Tetragonal, I41/acdµ = 0.98 mm1
a = 19.124 (5) ÅT = 293 K
c = 14.9120 (4) Å0.15 × 0.09 × 0.06 mm
V = 5454 (2) Å3
Data collection top
Bruker APEX CCD
diffractometer
1346 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1225 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.944Rint = 0.054
14412 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0491P)2 + 25.4234P]
where P = (Fo2 + 2Fc2)/3
1346 reflectionsΔρmax = 0.39 e Å3
97 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.69057 (3)0.05943 (3)0.12500.0215 (2)
C10.56957 (19)0.11100 (19)0.0239 (2)0.0318 (8)
H1A0.60820.12440.05760.038*
C20.5042 (2)0.1237 (2)0.0580 (2)0.0402 (10)
H2A0.49890.14540.11340.048*
C30.4464 (2)0.1038 (2)0.0088 (3)0.0431 (10)
H3A0.40150.11180.03050.052*
C40.45662 (19)0.0717 (2)0.0735 (2)0.0358 (9)
H4A0.41870.05790.10820.043*
C50.52424 (17)0.06066 (18)0.1029 (2)0.0259 (7)
C60.54152 (16)0.02572 (17)0.1886 (2)0.0214 (7)
C70.75000.0594 (3)0.00000.0300 (11)
H7A0.75000.10800.00000.036*
N10.58042 (15)0.08037 (14)0.05536 (18)0.0250 (6)
N20.60816 (13)0.01663 (13)0.20974 (16)0.0196 (6)
N30.4964 (2)0.00000.25000.0272 (9)
O10.70537 (14)0.03180 (15)0.0481 (2)0.0501 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0221 (3)0.0221 (3)0.0203 (4)0.0017 (3)0.00432 (19)0.00432 (19)
C10.0325 (19)0.041 (2)0.0219 (17)0.0094 (16)0.0010 (15)0.0133 (15)
C20.041 (2)0.051 (2)0.0280 (18)0.0110 (19)0.0106 (17)0.0199 (18)
C30.033 (2)0.060 (3)0.037 (2)0.0061 (18)0.0149 (17)0.019 (2)
C40.0266 (19)0.048 (2)0.0325 (19)0.0032 (16)0.0025 (16)0.0150 (17)
C50.0272 (18)0.0303 (18)0.0202 (16)0.0008 (14)0.0028 (13)0.0057 (14)
C60.0210 (16)0.0264 (17)0.0167 (14)0.0000 (13)0.0021 (12)0.0049 (13)
C70.032 (3)0.023 (2)0.035 (3)0.0000.001 (2)0.000
N10.0279 (15)0.0275 (15)0.0197 (14)0.0018 (12)0.0009 (11)0.0086 (11)
N20.0225 (14)0.0210 (14)0.0154 (12)0.0015 (10)0.0012 (11)0.0058 (10)
N30.0205 (19)0.039 (2)0.0217 (18)0.0000.0000.0090 (17)
O10.0370 (16)0.0438 (16)0.069 (2)0.0047 (13)0.0165 (15)0.0253 (15)
Geometric parameters (Å, º) top
Mn1—O12.107 (3)C3—H3A0.9300
Mn1—O1i2.107 (3)C4—C51.382 (5)
Mn1—N2i2.180 (3)C4—H4A0.9300
Mn1—N22.180 (3)C5—N11.341 (4)
Mn1—N12.382 (3)C5—C61.480 (4)
Mn1—N1i2.382 (3)C6—N21.324 (4)
C1—N11.335 (4)C6—N31.350 (4)
C1—C21.372 (5)C7—O11.234 (3)
C1—H1A0.9300C7—O1ii1.234 (3)
C2—C31.379 (5)C7—H7A0.9300
C2—H2A0.9300N2—N2iii1.359 (5)
C3—C41.386 (5)N3—C6iii1.350 (4)
O1—Mn1—O1i94.23 (17)C2—C3—H3A120.6
O1—Mn1—N2i103.46 (11)C4—C3—H3A120.6
O1i—Mn1—N2i95.84 (10)C5—C4—C3118.7 (3)
O1—Mn1—N295.84 (10)C5—C4—H4A120.6
O1i—Mn1—N2103.46 (11)C3—C4—H4A120.6
N2i—Mn1—N2151.55 (13)N1—C5—C4122.6 (3)
O1—Mn1—N191.19 (11)N1—C5—C6113.9 (3)
O1i—Mn1—N1172.74 (12)C4—C5—C6123.5 (3)
N2i—Mn1—N187.58 (9)N2—C6—N3114.0 (3)
N2—Mn1—N171.13 (9)N2—C6—C5118.6 (3)
O1—Mn1—N1i172.74 (12)N3—C6—C5127.4 (3)
O1i—Mn1—N1i91.19 (11)O1—C7—O1ii129.3 (5)
N2i—Mn1—N1i71.13 (9)O1—C7—H7A115.3
N2—Mn1—N1i87.58 (9)O1ii—C7—H7A115.3
N1—Mn1—N1i83.84 (14)C1—N1—C5117.8 (3)
N1—C1—C2123.2 (3)C1—N1—Mn1126.6 (2)
N1—C1—H1A118.4C5—N1—Mn1115.5 (2)
C2—C1—H1A118.4C6—N2—N2iii105.75 (17)
C1—C2—C3119.0 (3)C6—N2—Mn1120.59 (19)
C1—C2—H2A120.5N2iii—N2—Mn1133.48 (7)
C3—C2—H2A120.5C6—N3—C6iii100.6 (4)
C2—C3—C4118.7 (4)C7—O1—Mn1139.8 (3)
Symmetry codes: (i) y+3/4, x3/4, z+1/4; (ii) x+3/2, y, z; (iii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C12H8N5)(CHO2)]
Mr322.20
Crystal system, space groupTetragonal, I41/acd
Temperature (K)293
a, c (Å)19.124 (5), 14.9120 (4)
V3)5454 (2)
Z16
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.15 × 0.09 × 0.06
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.867, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
14412, 1346, 1225
Rint0.054
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.121, 1.09
No. of reflections1346
No. of parameters97
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0491P)2 + 25.4234P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.39, 0.37

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-M. & Tong, M.-L. (2007). Acc. Chem. Res. 40, 162–170.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCheng, L., Zhang, W.-X., Ye, B.-H., Lin, J.-B. & Chen, X.-M. (2007a). Inorg. Chem. 46, 1135–1143.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCheng, L., Zhang, W.-X., Ye, B.-H., Lin, J.-B. & Chen, X.-M. (2007b). Eur. J. Inorg. Chem. pp. 2668–2676.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-M. (2005). Coord. Chem. Rev. 249, 1201–1219.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds