metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aqua­bis­(μ3-maleato-κ4O1:O1′,O4:O4′)dicopper(II)] trihydrate]

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

(Received 21 July 2008; accepted 22 July 2008; online 26 July 2008)

In the title compound, {[Cu2(C4H2O4)2(H2O)2]·3H2O}n, CuII ions with square-pyramidal coordination are bridged by exo­tri­dentate maleate dianions into [Cu2(maleate)2(H2O)2]n layers coincident with the bc crystal plane. The inter­lamellar regions contain hydrogen-bonded cyclic water hexa­mers which facilitate layer stacking into a pseudo-three-dimensional crystal structure. The water hexamers themselves are formed by the operation of crystallographic inversion centers on sets of three crystallographically distinct water molecules of hydration.

Related literature

For recent dpa coordination polymers, see: Brown et al. (2008[Brown, K. A., Martin, D. P., Supkowski, R. M. & LaDuca, R. L. (2008). CrystEngComm, 10, 846-855.]). For the preparation of dpa, see: Zapf et al. (1998[Zapf, P. J., LaDuca, R. L., Rarig, R. S., Johnson, K. M. III & Zubieta, J. (1998). Inorg. Chem. 37, 3411-3414.]). For the determination of the τ factor for five-coordinate geometries, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C4H2O4)2(H2O)2]·3H2O

  • Mr = 445.27

  • Monoclinic, P 21 /c

  • a = 8.8835 (14) Å

  • b = 8.7700 (14) Å

  • c = 18.814 (3) Å

  • β = 97.994 (3)°

  • V = 1451.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.00 mm−1

  • T = 173 (2) K

  • 0.30 × 0.28 × 0.05 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.470, Tmax = 0.860

  • 9585 measured reflections

  • 2643 independent reflections

  • 2331 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.055

  • S = 1.03

  • 2643 reflections

  • 238 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O5 0.878 (16) 2.034 (17) 2.910 (3) 175 (3)
O1W—H1WB⋯O2W 0.864 (16) 2.034 (18) 2.863 (3) 161 (3)
O2W—H2WA⋯O7 0.861 (16) 1.967 (17) 2.827 (3) 177 (3)
O2W—H2WB⋯O3W 0.851 (16) 2.014 (18) 2.854 (3) 169 (3)
O3W—H3WA⋯O2i 0.871 (16) 1.995 (19) 2.847 (2) 166 (3)
O3W—H3WB⋯O1Wi 0.857 (16) 2.17 (2) 2.928 (3) 148 (2)
O9—H9A⋯O1Wii 0.853 (16) 1.987 (18) 2.831 (3) 170 (3)
O9—H9B⋯O10iii 0.851 (16) 2.023 (19) 2.855 (3) 165 (2)
O10—H10A⋯O2Wiv 0.867 (16) 1.943 (17) 2.797 (3) 168 (3)
O10—H10B⋯O3W 0.846 (16) 2.059 (18) 2.879 (3) 163 (2)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) x+1, y+1, z; (iv) -x+1, -y, -z.

Data collection: COSMO (Bruker, 2006[Bruker (2006). COSMO, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 (Bruker, 2006[Bruker (2006). COSMO, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2006[Bruker (2006). COSMO, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Bicester, Oxfordshire, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently our group has been investigating metal dicarboxylate coordination polymers with 4,4'-dipyridylamine (dpa) co-ligands (Brown et al., 2008). In an attempt to prepare a copper maleate/dpa dual-ligand coordination polymer, blue plates of the title compound were obtained. The asymmetric unit (Fig. 1) of the title compound contains two CuII ions, two maleate ligands and two aqua ligands along with three water molecules of crystallization. Each crystallographically distinct CuII ion manifests square pyramidal [CuO5] coordination with τ factors (Addison et al., 1984) of 0.045 and 0.025 for Cu1 and Cu2, respectively.

Each Cu1 atom is connected to two Cu2 atoms by a exotridentate maleate ligand. In turn, each Cu2 atom is connected to two Cu1 atoms by a crystallographically distinct exotridentate maleate ligand. In this manner [Cu2(maleate)2(H2O)2]n layers are constructed, coincident with the bc crystal planes (Fig. 2). The Cu atoms describe a (4,4) grid with Cu···Cu distances around the grid perimeter of 4.925 (1), 4.874 (1), 4.902 (1) and 4.835 (1) Å. The through-space Cu···Cu distances across the two different types of grid spaces measure 6.338 (1) and 6.261 (1) Å, and 5.390 and 7.094 Å.

Adjacent [Cu2(maleate)2(H2O)2]n layers stack in an ABAB pattern to construct the three-dimensional crystal structure (Fig. 3) by means of O—H···O hydrogen bonding patterns between bound and unligated water molecules of crystallization. The unligated water molecules situated between the [Cu2(maleate)2(H2O)2]n layers aggregate into pseudo co-planar cyclic hexamers by action of the crystallographic inversion centers on sets of three crystallographically distinct water molecules of hydration (Fig. 4).

Related literature top

For related literature, see: Addison et al. (1984); Brown et al. (2008); Zapf et al. (1998).

Experimental top

Copper nitrate trihydrate and maleic acid were obtained commercially. 4,4'-dipyridylamine (dpa) was prepared via a published procedure (Zapf et al., 1998). Copper nitrate trihydrate (17 mg, 0.07 mmol) and maleic acid (9 mg, 0.08 mmol) were dissolved in 1.5 ml water in a glass vial. A 0.75 ml aliquot of a 1:1 water:ethanol mixture was then added, followed by 1.5 ml of an ethanolic solution of dpa (32 mg, 0.19 mmol). Blue plates of the title compound deposited after standing at 25 °C for one week.

Computing details top

Data collection: COSMO (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound, showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atoms have been omitted. Color codes: blue Cu, red O within maleate moieties, orange O within water molecules, black C.
[Figure 2] Fig. 2. A single coordination polymer layer in the title compound, viewed down the c crystal direction.
[Figure 3] Fig. 3. Packing diagram illustrating the ABAB layer stacking pattern, which forms the 3-D crystal structure of the title compound through hydrogen bonding between ligated and unligated water molecules.
[Figure 4] Fig. 4. A single pseudo-planar cyclic water molecule hexamer in the title compound.
Poly[[diaquabis(µ3-maleato-κ4O1:O1',O4:O4')dicopper(II)] trihydrate] top
Crystal data top
[Cu2(C4H2O4)(H2O)2]·3H2OF(000) = 896
Mr = 445.27Dx = 2.038 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.8835 (14) ÅCell parameters from 9585 reflections
b = 8.7700 (14) Åθ = 2.2–25.3°
c = 18.814 (3) ŵ = 3.00 mm1
β = 97.994 (3)°T = 173 K
V = 1451.5 (4) Å3Plate, blue
Z = 40.30 × 0.28 × 0.05 mm
Data collection top
Bruker APEXII
diffractometer
2643 independent reflections
Radiation source: fine-focus sealed tube2331 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω/ψ scansθmax = 25.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 710
Tmin = 0.471, Tmax = 0.860k = 1010
9585 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0212P)2 + 1.6998P]
where P = (Fo2 + 2Fc2)/3
2643 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.31 e Å3
15 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu2(C4H2O4)(H2O)2]·3H2OV = 1451.5 (4) Å3
Mr = 445.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8835 (14) ŵ = 3.00 mm1
b = 8.7700 (14) ÅT = 173 K
c = 18.814 (3) Å0.30 × 0.28 × 0.05 mm
β = 97.994 (3)°
Data collection top
Bruker APEXII
diffractometer
2643 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2331 reflections with I > 2σ(I)
Tmin = 0.471, Tmax = 0.860Rint = 0.026
9585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02315 restraints
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.31 e Å3
2643 reflectionsΔρmin = 0.31 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.01597 (3)0.64409 (3)0.197428 (15)0.01156 (9)
Cu20.45106 (3)0.07186 (3)0.195099 (15)0.01174 (9)
O10.72160 (19)0.60380 (19)0.25258 (8)0.0151 (4)
O1W0.8228 (2)0.4259 (2)0.00615 (10)0.0233 (4)
H1WA0.886 (3)0.433 (3)0.0464 (12)0.028*
H1WB0.746 (2)0.374 (3)0.0165 (14)0.028*
O20.80468 (19)0.6770 (2)0.15230 (9)0.0156 (4)
O2W0.5879 (2)0.2061 (2)0.01524 (10)0.0225 (4)
H2WA0.605 (3)0.157 (3)0.0552 (11)0.027*
H2WB0.495 (2)0.233 (3)0.0091 (14)0.027*
O30.4171 (2)0.27085 (19)0.14892 (9)0.0164 (4)
O3W0.2668 (2)0.2526 (2)0.00371 (10)0.0236 (4)
H3WA0.238 (3)0.258 (3)0.0498 (9)0.028*
H3WB0.242 (3)0.338 (2)0.0134 (13)0.028*
O40.5053 (2)0.38423 (19)0.25143 (9)0.0150 (4)
O51.0151 (2)0.44986 (19)0.14409 (9)0.0152 (4)
O60.9918 (2)0.32879 (19)0.24548 (9)0.0148 (4)
O70.63415 (19)0.0476 (2)0.14736 (9)0.0152 (4)
O80.78378 (19)0.09818 (19)0.24870 (9)0.0151 (4)
O91.0870 (2)0.7605 (2)0.10332 (9)0.0191 (4)
H9A1.103 (3)0.701 (3)0.0691 (12)0.023*
H9B1.149 (3)0.835 (2)0.1052 (14)0.023*
O100.3104 (2)0.0132 (2)0.08656 (9)0.0162 (4)
H10A0.355 (3)0.071 (2)0.0582 (13)0.019*
H10B0.280 (3)0.066 (2)0.0636 (13)0.019*
C10.6980 (3)0.6406 (3)0.18741 (13)0.0132 (5)
C20.5430 (3)0.6438 (3)0.14606 (13)0.0129 (5)
H20.51620.73170.11760.016*
C30.4383 (3)0.5354 (3)0.14503 (13)0.0140 (5)
H30.34370.55330.11600.017*
C40.4550 (3)0.3888 (3)0.18500 (13)0.0143 (5)
C51.0001 (3)0.3283 (3)0.17929 (13)0.0131 (5)
C60.9934 (3)0.1841 (3)0.13696 (13)0.0135 (5)
H61.06820.17030.10600.016*
C70.8919 (3)0.0730 (3)0.13873 (13)0.0142 (5)
H70.90190.01400.10970.017*
C80.7639 (3)0.0732 (3)0.18235 (13)0.0133 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01167 (17)0.01221 (16)0.01043 (16)0.00015 (13)0.00021 (12)0.00049 (12)
Cu20.01275 (18)0.01194 (16)0.01041 (16)0.00027 (13)0.00118 (12)0.00011 (12)
O10.0139 (10)0.0193 (9)0.0121 (9)0.0001 (8)0.0017 (7)0.0033 (7)
O1W0.0287 (12)0.0259 (11)0.0142 (10)0.0018 (9)0.0006 (8)0.0005 (9)
O20.0113 (9)0.0225 (10)0.0129 (9)0.0018 (8)0.0013 (7)0.0026 (7)
O2W0.0208 (11)0.0305 (11)0.0160 (10)0.0059 (9)0.0017 (8)0.0050 (9)
O30.0251 (11)0.0108 (9)0.0127 (9)0.0018 (8)0.0007 (7)0.0023 (7)
O3W0.0308 (12)0.0228 (10)0.0156 (10)0.0031 (9)0.0026 (9)0.0006 (8)
O40.0192 (10)0.0127 (9)0.0125 (9)0.0007 (8)0.0004 (7)0.0007 (7)
O50.0186 (10)0.0116 (9)0.0148 (9)0.0017 (8)0.0002 (7)0.0018 (7)
O60.0191 (10)0.0121 (9)0.0133 (9)0.0004 (7)0.0024 (7)0.0009 (7)
O70.0086 (9)0.0219 (10)0.0143 (9)0.0009 (8)0.0008 (7)0.0002 (8)
O80.0127 (10)0.0190 (9)0.0136 (9)0.0008 (8)0.0013 (7)0.0008 (7)
O90.0230 (11)0.0158 (10)0.0203 (10)0.0052 (8)0.0096 (8)0.0013 (8)
O100.0181 (10)0.0148 (10)0.0160 (10)0.0018 (8)0.0031 (8)0.0004 (8)
C10.0158 (14)0.0088 (12)0.0149 (13)0.0013 (11)0.0019 (11)0.0024 (10)
C20.0149 (14)0.0131 (13)0.0108 (12)0.0026 (11)0.0018 (10)0.0013 (10)
C30.0141 (14)0.0157 (13)0.0114 (12)0.0058 (11)0.0005 (10)0.0007 (10)
C40.0089 (13)0.0168 (13)0.0180 (14)0.0003 (11)0.0050 (10)0.0002 (11)
C50.0075 (13)0.0148 (13)0.0162 (14)0.0011 (10)0.0013 (10)0.0003 (11)
C60.0124 (13)0.0133 (13)0.0156 (13)0.0034 (11)0.0046 (10)0.0009 (10)
C70.0159 (14)0.0122 (12)0.0144 (13)0.0045 (11)0.0021 (10)0.0002 (10)
C80.0167 (14)0.0074 (12)0.0157 (13)0.0017 (11)0.0018 (11)0.0012 (10)
Geometric parameters (Å, º) top
Cu1—O6i1.9501 (17)O4—Cu2iii1.9395 (17)
Cu1—O8i1.9628 (17)O5—C51.272 (3)
Cu1—O21.9708 (17)O6—C51.258 (3)
Cu1—O51.9765 (17)O6—Cu1iv1.9501 (17)
Cu1—O92.2101 (17)O7—C81.265 (3)
Cu2—O4ii1.9395 (17)O8—C81.255 (3)
Cu2—O31.9541 (17)O8—Cu1iv1.9627 (17)
Cu2—O1ii1.9544 (17)O9—H9A0.853 (16)
Cu2—O71.9757 (17)O9—H9B0.851 (16)
Cu2—O102.3618 (18)O10—H10A0.867 (16)
O1—C11.257 (3)O10—H10B0.846 (16)
O1—Cu2iii1.9544 (17)C1—C21.485 (3)
O1W—H1WA0.878 (16)C2—C31.328 (4)
O1W—H1WB0.864 (16)C2—H20.9500
O2—C11.269 (3)C3—C41.487 (3)
O2W—H2WA0.861 (16)C3—H30.9500
O2W—H2WB0.851 (16)C5—C61.492 (3)
O3—C41.257 (3)C6—C71.331 (4)
O3W—H3WA0.871 (16)C6—H60.9500
O3W—H3WB0.857 (16)C7—C81.492 (3)
O4—C41.268 (3)C7—H70.9500
O6i—Cu1—O8i89.13 (7)Cu1—O9—H9A114.8 (18)
O6i—Cu1—O290.64 (7)Cu1—O9—H9B125.1 (18)
O8i—Cu1—O2173.22 (7)H9A—O9—H9B109 (2)
O6i—Cu1—O5176.01 (7)Cu2—O10—H10A118.9 (19)
O8i—Cu1—O591.41 (7)Cu2—O10—H10B105.9 (18)
O2—Cu1—O588.35 (7)H10A—O10—H10B108 (2)
O6i—Cu1—O995.37 (7)O1—C1—O2122.5 (2)
O8i—Cu1—O999.75 (7)O1—C1—C2122.2 (2)
O2—Cu1—O987.02 (7)O2—C1—C2115.3 (2)
O5—Cu1—O988.44 (7)C3—C2—C1126.2 (2)
O4ii—Cu2—O3174.68 (7)C3—C2—H2116.9
O4ii—Cu2—O1ii88.55 (7)C1—C2—H2116.9
O3—Cu2—O1ii90.71 (7)C2—C3—C4126.3 (2)
O4ii—Cu2—O791.53 (7)C2—C3—H3116.9
O3—Cu2—O788.85 (7)C4—C3—H3116.9
O1ii—Cu2—O7176.09 (7)O3—C4—O4122.5 (2)
O4ii—Cu2—O10102.95 (7)O3—C4—C3116.0 (2)
O3—Cu2—O1082.37 (7)O4—C4—C3121.5 (2)
O1ii—Cu2—O1097.06 (7)O6—C5—O5122.5 (2)
O7—Cu2—O1086.73 (7)O6—C5—C6121.9 (2)
C1—O1—Cu2iii119.48 (16)O5—C5—C6115.6 (2)
H1WA—O1W—H1WB106 (2)C7—C6—C5125.7 (2)
C1—O2—Cu1118.31 (16)C7—C6—H6117.1
H2WA—O2W—H2WB108 (2)C5—C6—H6117.1
C4—O3—Cu2118.78 (16)C6—C7—C8125.7 (2)
H3WA—O3W—H3WB106 (2)C6—C7—H7117.1
C4—O4—Cu2iii120.15 (16)C8—C7—H7117.1
C5—O5—Cu1116.82 (16)O8—C8—O7122.7 (2)
C5—O6—Cu1iv123.65 (16)O8—C8—C7122.3 (2)
C8—O7—Cu2119.51 (16)O7—C8—C7115.0 (2)
C8—O8—Cu1iv122.77 (16)
O6i—Cu1—O2—C178.93 (18)O2—C1—C2—C3132.4 (3)
O8i—Cu1—O2—C19.1 (7)C1—C2—C3—C40.1 (4)
O5—Cu1—O2—C197.21 (18)Cu2—O3—C4—O44.7 (3)
O9—Cu1—O2—C1174.27 (18)Cu2—O3—C4—C3174.94 (16)
O4ii—Cu2—O3—C46.9 (9)Cu2iii—O4—C4—O3175.98 (18)
O1ii—Cu2—O3—C475.07 (18)Cu2iii—O4—C4—C34.4 (3)
O7—Cu2—O3—C4101.05 (18)C2—C3—C4—O3130.6 (3)
O10—Cu2—O3—C4172.09 (19)C2—C3—C4—O449.0 (4)
O6i—Cu1—O5—C527.4 (11)Cu1iv—O6—C5—O5175.24 (17)
O8i—Cu1—O5—C570.43 (17)Cu1iv—O6—C5—C64.5 (3)
O2—Cu1—O5—C5102.78 (17)Cu1—O5—C5—O62.6 (3)
O9—Cu1—O5—C5170.15 (18)Cu1—O5—C5—C6177.60 (16)
O4ii—Cu2—O7—C874.33 (18)O6—C5—C6—C747.7 (4)
O3—Cu2—O7—C8100.36 (18)O5—C5—C6—C7132.5 (3)
O1ii—Cu2—O7—C816.7 (11)C5—C6—C7—C81.2 (4)
O10—Cu2—O7—C8177.22 (18)Cu1iv—O8—C8—O7178.04 (17)
Cu2iii—O1—C1—O2173.13 (17)Cu1iv—O8—C8—C71.3 (3)
Cu2iii—O1—C1—C27.1 (3)Cu2—O7—C8—O87.6 (3)
Cu1—O2—C1—O19.6 (3)Cu2—O7—C8—C7171.73 (15)
Cu1—O2—C1—C2170.14 (16)C6—C7—C8—O852.5 (4)
O1—C1—C2—C347.3 (4)C6—C7—C8—O7126.8 (3)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O50.88 (2)2.03 (2)2.910 (3)175 (3)
O1W—H1WB···O2W0.86 (2)2.03 (2)2.863 (3)161 (3)
O2W—H2WA···O70.86 (2)1.97 (2)2.827 (3)177 (3)
O2W—H2WB···O3W0.85 (2)2.01 (2)2.854 (3)169 (3)
O3W—H3WA···O2v0.87 (2)2.00 (2)2.847 (2)166 (3)
O3W—H3WB···O1Wv0.86 (2)2.17 (2)2.928 (3)148 (2)
O9—H9A···O1Wvi0.85 (2)1.99 (2)2.831 (3)170 (3)
O9—H9B···O10vii0.85 (2)2.02 (2)2.855 (3)165 (2)
O10—H10A···O2Wviii0.87 (2)1.94 (2)2.797 (3)168 (3)
O10—H10B···O3W0.85 (2)2.06 (2)2.879 (3)163 (2)
Symmetry codes: (v) x+1, y+1, z; (vi) x+2, y+1, z; (vii) x+1, y+1, z; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C4H2O4)(H2O)2]·3H2O
Mr445.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.8835 (14), 8.7700 (14), 18.814 (3)
β (°) 97.994 (3)
V3)1451.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.00
Crystal size (mm)0.30 × 0.28 × 0.05
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.471, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
9585, 2643, 2331
Rint0.026
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.055, 1.03
No. of reflections2643
No. of parameters238
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.31

Computer programs: COSMO (Bruker, 2006), APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O50.878 (16)2.034 (17)2.910 (3)175 (3)
O1W—H1WB···O2W0.864 (16)2.034 (18)2.863 (3)161 (3)
O2W—H2WA···O70.861 (16)1.967 (17)2.827 (3)177 (3)
O2W—H2WB···O3W0.851 (16)2.014 (18)2.854 (3)169 (3)
O3W—H3WA···O2i0.871 (16)1.995 (19)2.847 (2)166 (3)
O3W—H3WB···O1Wi0.857 (16)2.17 (2)2.928 (3)148 (2)
O9—H9A···O1Wii0.853 (16)1.987 (18)2.831 (3)170 (3)
O9—H9B···O10iii0.851 (16)2.023 (19)2.855 (3)165 (2)
O10—H10A···O2Wiv0.867 (16)1.943 (17)2.797 (3)168 (3)
O10—H10B···O3W0.846 (16)2.059 (18)2.879 (3)163 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y, z.
 

Acknowledgements

The authors gratefully acknowledge the American Chemical Society Petroleum Research Fund and Michigan State University for funding this work.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrown, K. A., Martin, D. P., Supkowski, R. M. & LaDuca, R. L. (2008). CrystEngComm, 10, 846–855.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2006). COSMO, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Bicester, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZapf, P. J., LaDuca, R. L., Rarig, R. S., Johnson, K. M. III & Zubieta, J. (1998). Inorg. Chem. 37, 3411–3414.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds