metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1090-m1091

{(E)-2-[3-(Di­methyl­ammonio)propyl­iminometh­yl]phenolato}di­iodidozinc(II)

aKey Laboratory of Surface and Interface Science of Henan, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: xuewen_zhu@126.com

(Received 25 July 2008; accepted 27 July 2008; online 31 July 2008)

The title complex, [ZnI2(C12H18N2O)], is a mononuclear zinc(II) compound derived from the zwitterionic form of the Schiff base (E)-2-[(3-dimethyl­amino­propyl­imino)meth­yl]phenol. The ZnII atom is four-coordinated by the imine N and phenolate O atoms of the Schiff base ligand, and by two iodide ions in a tetra­hedral coordination geometry. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains running along the b axis.

Related literature

For background to the chemistry of Schiff base complexes, see: Ali et al. (2008[Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718-m719.]); Biswas et al. (2008[Biswas, C., Drew, M. G. B. & Ghosh, A. (2008). Inorg. Chem. 47, 4513-4519.]); Chen et al. (2008[Chen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]); Darensbourg & Frantz (2007[Darensbourg, D. J. & Frantz, E. B. (2007). Inorg. Chem. 46, 5967-5978.]); Habibi et al. (2007[Habibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905-m2906.]); Kawamoto et al. (2008[Kawamoto, T., Nishiwaki, M., Tsunekawa, Y., Nozaki, K. & Konno, T. (2008). Inorg. Chem. 47, 3095-3104.]); Lipscomb & Sträter (1996[Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375-2434.]); Tomat et al. (2007[Tomat, E., Cuesta, L., Lynch, V. M. & Sessler, J. L. (2007). Inorg. Chem. 46, 6224-6226.]); Wu et al. (2008[Wu, J.-C., Liu, S.-X., Keene, T. D., Neels, A., Mereacre, V., Powell, A. K. & Decurtins, S. (2008). Inorg. Chem. 47, 3452-3459.]); Yuan et al. (2007[Yuan, M., Zhao, F., Zhang, W., WAng, Z.-M. & Gao, S. (2007). Inorg. Chem. 46, 11235-11242.]). For related structures, see: Qiu (2006a[Qiu, X.-Y. (2006a). Acta Cryst. E62, m717-m718.],b[Qiu, X.-Y. (2006b). Acta Cryst. E62, m2173-m2174.]); Wei et al. (2007[Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654-m655.]); Zhu et al. (2007[Zhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m1431-m1432.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnI2(C12H18N2O)]

  • Mr = 525.45

  • Orthorhombic, P n a 21

  • a = 13.892 (3) Å

  • b = 16.640 (2) Å

  • c = 7.372 (3) Å

  • V = 1704.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.06 mm−1

  • T = 298 (2) K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.431, Tmax = 0.463 (expected range = 0.375–0.402)

  • 12154 measured reflections

  • 3669 independent reflections

  • 3271 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.100

  • S = 1.04

  • 3669 reflections

  • 165 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.82 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1660 Friedel pairs

  • Flack parameter: 0.00 (4)

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 1.952 (4)
Zn1—N1 2.010 (6)
Zn1—I2 2.5550 (11)
Zn1—I1 2.5615 (11)
O1—Zn1—N1 94.3 (2)
O1—Zn1—I2 112.17 (16)
N1—Zn1—I2 113.02 (16)
O1—Zn1—I1 112.90 (16)
N1—Zn1—I1 106.74 (18)
I2—Zn1—I1 115.67 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.91 1.91 2.772 (8) 157
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have widely been used as versatile ligands in coordination chemistry (Biswas et al., 2008; Wu et al., 2008; Kawamoto et al., 2008; Ali et al., 2008; Habibi et al., 2007), and their metal complexes are of great interest in many fields (Chen et al., 2008; Yuan et al., 2007; Tomat et al., 2007; Darensbourg & Frantz, 2007). Zinc(II) is an important element in biological systems and functions as the active site of hydrolytic enzymes, such as carboxypeptidase and carbonic anhydrase where it is in a hard-donor coordination environment of nitrogen and oxygen ligands (Lipscomb & Sträter, 1996). In this paper, a new zinc(II) complex, (I), Fig. 1, of the Schiff base ligand (E)-2-[(3-dimethylaminopropylimino)methyl]phenol has been synthesized and structurally characterized.

The ZnII atom in (I) is four-coordinated by the imine N and phenolate O atoms of the zwitterionic form of the Schiff base ligand, and by two I- ions, in a tetrahedral coordination geometry. The coordinate bond lengths (Table 1) are typical and comparable to the corresponding values observed in other similar zinc(II) Schiff base complexes (Zhu et al., 2007; Wei et al., 2007; Qiu, 2006a,b).

In the crystal structure, molecules are linked through intermolecular N–H···O hydrogen bonds (Table 2), forming chains running along the b axis (Fig. 2).

Related literature top

For background to the chemistry of Schiff base complexes, see: Ali et al. (2008); Biswas et al. (2008); Chen et al. (2008); Darensbourg & Frantz (2007); Habibi et al. (2007); Kawamoto et al. (2008); Lipscomb & Sträter (1996); Tomat et al. (2007); Wu et al. (2008); Yuan et al. (2007). For related structures, see: Qiu (2006a,b); Wei et al. (2007); Zhu et al. (2007).

Experimental top

The Schiff base compound was prepared by the condensation of equimolar amounts of salicylaldehyde with N,N-dimethylpropane-1,3-diamine in a methanol solution. The complex was prepared by the following method. To an anhydrous methanol solution (5 ml) of ZnI2 (31.9 mg, 0.1 mmol) was added a methanol solution (10 ml) of the Schiff base compound (20.6 mg, 0.1 mmol) with stirring. The mixture was stirred for 30 min at room temperature and filtered. Upon keeping the filtrate in air for a few days, colorless block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.93–0.97 Å, N–H distances of 0.91 Å, and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the c axis.
{(E)-2-[3-(Dimethylammonio)propyliminomethyl]phenolato}diiodidozinc(II) top
Crystal data top
[ZnI2(C12H18N2O)]F(000) = 992
Mr = 525.45Dx = 2.048 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4125 reflections
a = 13.892 (3) Åθ = 2.4–25.0°
b = 16.640 (2) ŵ = 5.06 mm1
c = 7.372 (3) ÅT = 298 K
V = 1704.1 (8) Å3Block, colorless
Z = 40.20 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3669 independent reflections
Radiation source: fine-focus sealed tube3271 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1717
Tmin = 0.431, Tmax = 0.463k = 2021
12154 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.9395P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3669 reflectionsΔρmax = 1.82 e Å3
165 parametersΔρmin = 0.47 e Å3
1 restraintAbsolute structure: Flack (1983), 1660 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (4)
Crystal data top
[ZnI2(C12H18N2O)]V = 1704.1 (8) Å3
Mr = 525.45Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 13.892 (3) ŵ = 5.06 mm1
b = 16.640 (2) ÅT = 298 K
c = 7.372 (3) Å0.20 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3669 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3271 reflections with I > 2σ(I)
Tmin = 0.431, Tmax = 0.463Rint = 0.048
12154 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.100Δρmax = 1.82 e Å3
S = 1.04Δρmin = 0.47 e Å3
3669 reflectionsAbsolute structure: Flack (1983), 1660 Friedel pairs
165 parametersAbsolute structure parameter: 0.00 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.75194 (6)0.90239 (4)0.72869 (14)0.03631 (19)
I10.58993 (3)0.92236 (3)0.88834 (9)0.04992 (15)
I20.89258 (4)0.98333 (3)0.85716 (9)0.05741 (18)
N10.7294 (4)0.9228 (3)0.4634 (8)0.0379 (13)
N20.8361 (5)1.1716 (3)0.3321 (11)0.0544 (19)
H2A0.78571.20520.31060.065*
O10.7847 (4)0.7893 (3)0.6946 (7)0.0429 (12)
C10.8309 (5)0.7664 (4)0.5451 (11)0.0385 (16)
C20.8869 (6)0.6960 (5)0.5496 (14)0.053 (2)
H20.89230.66720.65730.063*
C30.9338 (6)0.6691 (5)0.396 (2)0.070 (3)
H30.97220.62340.40300.084*
C40.9256 (7)0.7066 (5)0.2392 (16)0.063 (3)
H40.95750.68650.13800.075*
C50.8701 (7)0.7758 (5)0.2225 (15)0.063 (2)
H50.86530.80190.11130.075*
C60.8209 (5)0.8061 (4)0.3760 (13)0.0422 (15)
C70.7648 (5)0.8782 (4)0.3445 (10)0.0389 (16)
H70.75420.89260.22430.047*
C80.6691 (5)0.9919 (4)0.4056 (12)0.0456 (19)
H8A0.60740.98890.46670.055*
H8B0.65740.98800.27610.055*
C90.7143 (6)1.0712 (4)0.4458 (11)0.0459 (19)
H9A0.73581.07210.57100.055*
H9B0.66681.11340.43050.055*
C100.7992 (6)1.0871 (4)0.3217 (13)0.049 (2)
H10A0.85101.05050.35310.059*
H10B0.78021.07580.19770.059*
C110.8730 (10)1.1894 (6)0.5117 (19)0.100 (5)
H11A0.91641.14760.54880.150*
H11B0.82051.19260.59600.150*
H11C0.90661.23980.50920.150*
C120.9089 (8)1.1848 (6)0.186 (2)0.101 (5)
H12A0.92691.24050.18340.151*
H12B0.88191.16990.07110.151*
H12C0.96481.15250.20990.151*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0426 (5)0.0328 (3)0.0335 (4)0.0041 (3)0.0026 (4)0.0028 (3)
I10.0415 (3)0.0491 (2)0.0591 (3)0.00396 (18)0.0126 (3)0.0002 (3)
I20.0486 (3)0.0603 (3)0.0633 (4)0.0039 (2)0.0084 (3)0.0062 (3)
N10.037 (3)0.042 (3)0.035 (3)0.012 (2)0.001 (3)0.004 (3)
N20.048 (4)0.029 (3)0.086 (6)0.005 (3)0.002 (4)0.007 (3)
O10.052 (3)0.032 (2)0.045 (3)0.008 (2)0.007 (3)0.006 (2)
C10.034 (4)0.033 (3)0.048 (5)0.008 (3)0.005 (3)0.002 (3)
C20.055 (5)0.040 (4)0.063 (6)0.008 (4)0.016 (4)0.005 (4)
C30.059 (5)0.040 (4)0.111 (9)0.008 (4)0.019 (7)0.003 (6)
C40.063 (6)0.052 (5)0.073 (7)0.010 (4)0.028 (5)0.016 (5)
C50.070 (6)0.063 (5)0.055 (6)0.001 (4)0.014 (5)0.012 (5)
C60.040 (4)0.040 (3)0.046 (4)0.003 (3)0.008 (4)0.004 (4)
C70.049 (4)0.044 (3)0.024 (4)0.001 (3)0.003 (3)0.001 (3)
C80.041 (4)0.045 (3)0.051 (5)0.001 (3)0.004 (4)0.017 (4)
C90.051 (5)0.039 (4)0.047 (5)0.016 (3)0.006 (4)0.005 (3)
C100.051 (5)0.027 (3)0.070 (6)0.005 (3)0.005 (4)0.006 (3)
C110.111 (10)0.054 (6)0.135 (11)0.023 (6)0.078 (9)0.026 (6)
C120.074 (7)0.052 (5)0.177 (15)0.007 (5)0.051 (8)0.028 (8)
Geometric parameters (Å, º) top
Zn1—O11.952 (4)C5—C61.415 (12)
Zn1—N12.010 (6)C5—H50.9300
Zn1—I22.5550 (11)C6—C71.449 (9)
Zn1—I12.5615 (11)C7—H70.9300
N1—C71.250 (9)C8—C91.491 (10)
N1—C81.485 (9)C8—H8A0.9700
N2—C111.451 (14)C8—H8B0.9700
N2—C121.493 (15)C9—C101.516 (12)
N2—C101.498 (8)C9—H9A0.9700
N2—H2A0.9100C9—H9B0.9700
O1—C11.331 (9)C10—H10A0.9700
C1—C21.406 (10)C10—H10B0.9700
C1—C61.417 (12)C11—H11A0.9600
C2—C31.384 (15)C11—H11B0.9600
C2—H20.9300C11—H11C0.9600
C3—C41.317 (17)C12—H12A0.9600
C3—H30.9300C12—H12B0.9600
C4—C51.392 (12)C12—H12C0.9600
C4—H40.9300
O1—Zn1—N194.3 (2)N1—C7—C6126.2 (7)
O1—Zn1—I2112.17 (16)N1—C7—H7116.9
N1—Zn1—I2113.02 (16)C6—C7—H7116.9
O1—Zn1—I1112.90 (16)N1—C8—C9113.0 (6)
N1—Zn1—I1106.74 (18)N1—C8—H8A109.0
I2—Zn1—I1115.67 (4)C9—C8—H8A109.0
C7—N1—C8118.8 (7)N1—C8—H8B109.0
C7—N1—Zn1121.4 (5)C9—C8—H8B109.0
C8—N1—Zn1119.9 (5)H8A—C8—H8B107.8
C11—N2—C12112.8 (9)C8—C9—C10111.2 (6)
C11—N2—C10111.1 (7)C8—C9—H9A109.4
C12—N2—C10109.5 (8)C10—C9—H9A109.4
C11—N2—H2A107.8C8—C9—H9B109.4
C12—N2—H2A107.8C10—C9—H9B109.4
C10—N2—H2A107.8H9A—C9—H9B108.0
C1—O1—Zn1119.6 (4)N2—C10—C9113.5 (6)
O1—C1—C2119.0 (7)N2—C10—H10A108.9
O1—C1—C6123.2 (6)C9—C10—H10A108.9
C2—C1—C6117.6 (7)N2—C10—H10B108.9
C3—C2—C1120.7 (9)C9—C10—H10B108.9
C3—C2—H2119.6H10A—C10—H10B107.7
C1—C2—H2119.6N2—C11—H11A109.5
C4—C3—C2121.6 (8)N2—C11—H11B109.5
C4—C3—H3119.2H11A—C11—H11B109.5
C2—C3—H3119.2N2—C11—H11C109.5
C3—C4—C5121.2 (9)H11A—C11—H11C109.5
C3—C4—H4119.4H11B—C11—H11C109.5
C5—C4—H4119.4N2—C12—H12A109.5
C4—C5—C6119.5 (10)N2—C12—H12B109.5
C4—C5—H5120.3H12A—C12—H12B109.5
C6—C5—H5120.3N2—C12—H12C109.5
C5—C6—C1119.3 (7)H12A—C12—H12C109.5
C5—C6—C7115.2 (8)H12B—C12—H12C109.5
C1—C6—C7125.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.911.912.772 (8)157
Symmetry code: (i) x+3/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[ZnI2(C12H18N2O)]
Mr525.45
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)13.892 (3), 16.640 (2), 7.372 (3)
V3)1704.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)5.06
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.431, 0.463
No. of measured, independent and
observed [I > 2σ(I)] reflections
12154, 3669, 3271
Rint0.048
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.100, 1.04
No. of reflections3669
No. of parameters165
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.82, 0.47
Absolute structureFlack (1983), 1660 Friedel pairs
Absolute structure parameter0.00 (4)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O11.952 (4)Zn1—I22.5550 (11)
Zn1—N12.010 (6)Zn1—I12.5615 (11)
O1—Zn1—N194.3 (2)O1—Zn1—I1112.90 (16)
O1—Zn1—I2112.17 (16)N1—Zn1—I1106.74 (18)
N1—Zn1—I2113.02 (16)I2—Zn1—I1115.67 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.911.912.772 (8)157
Symmetry code: (i) x+3/2, y+1/2, z1/2.
 

References

First citationAli, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBiswas, C., Drew, M. G. B. & Ghosh, A. (2008). Inorg. Chem. 47, 4513–4519.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDarensbourg, D. J. & Frantz, E. B. (2007). Inorg. Chem. 46, 5967–5978.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHabibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905–m2906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKawamoto, T., Nishiwaki, M., Tsunekawa, Y., Nozaki, K. & Konno, T. (2008). Inorg. Chem. 47, 3095–3104.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375–2434.  CrossRef PubMed CAS Web of Science Google Scholar
First citationQiu, X.-Y. (2006a). Acta Cryst. E62, m717–m718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQiu, X.-Y. (2006b). Acta Cryst. E62, m2173–m2174.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomat, E., Cuesta, L., Lynch, V. M. & Sessler, J. L. (2007). Inorg. Chem. 46, 6224–6226.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654–m655.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, J.-C., Liu, S.-X., Keene, T. D., Neels, A., Mereacre, V., Powell, A. K. & Decurtins, S. (2008). Inorg. Chem. 47, 3452–3459.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYuan, M., Zhao, F., Zhang, W., WAng, Z.-M. & Gao, S. (2007). Inorg. Chem. 46, 11235–11242.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m1431–m1432.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1090-m1091
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds