metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1092-m1093

Di­bromido{(E)-2-eth­­oxy-6-[3-(methyl­ammonio)propyl­iminometh­yl]phenol­ato}zinc(II)

aKey Laboratory of Surface and Interface Science of Henan, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: xuewen_zhu@126.com

(Received 25 July 2008; accepted 27 July 2008; online 31 July 2008)

The title complex, [ZnBr2(C13H20N2O2)], is a mononuclear zinc(II) compound derived from the zwitterionic form of the Schiff base (E)-2-eth­oxy-6-((3-(methyl­amino)propyl­imino)meth­yl)phenol. The ZnII atom is four-coordinated by the imine N and phenolate O atoms of the Schiff base ligand, and by two bromide ions, in a tetra­hedral coordination geometry. Adjacent mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains running along the b axis.

Related literature

For background to the chemistry of the Schiff base complexes, see: Ali et al. (2008[Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718-m719.]); Biswas et al. (2008[Biswas, C., Drew, M. G. B. & Ghosh, A. (2008). Inorg. Chem. 47, 4513-4519.]); Chen et al. (2008[Chen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]); Darensbourg & Frantz (2007[Darensbourg, D. J. & Frantz, E. B. (2007). Inorg. Chem. 46, 5967-5978.]); Habibi et al. (2007[Habibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905-m2906.]); Kawamoto et al. (2008[Kawamoto, T., Nishiwaki, M., Tsunekawa, Y., Nozaki, K. & Konno, T. (2008). Inorg. Chem. 47, 3095-3104.]); Lipscomb & Sträter (1996[Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375-2434.]); Tomat et al. (2007[Tomat, E., Cuesta, L., Lynch, V. M. & Sessler, J. L. (2007). Inorg. Chem. 46, 6224-6226.]); Wu et al. (2008[Wu, J.-C., Liu, S.-X., Keene, T. D., Neels, A., Mereacre, V., Powell, A. K. & Decurtins, S. (2008). Inorg. Chem. 47, 3452-3459.]); Yuan et al. (2007[Yuan, M., Zhao, F., Zhang, W., Wang, Z.-M. & Gao, S. (2007). Inorg. Chem. 46, 11235-11242.]). For related structures, see: Qiu (2006[Qiu, X.-Y. (2006). Acta Cryst. E62, m717-m718.]); Wei et al. (2007[Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654-m655.]); Zhu et al. (2007[Zhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m1431-m1432.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C13H20N2O2)]

  • Mr = 461.50

  • Monoclinic, C 2/c

  • a = 17.884 (3) Å

  • b = 14.374 (2) Å

  • c = 14.992 (2) Å

  • β = 114.482 (3)°

  • V = 3507.4 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.96 mm−1

  • T = 298 (2) K

  • 0.23 × 0.21 × 0.21 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.341, Tmax = 0.367 (expected range = 0.265–0.286)

  • 14138 measured reflections

  • 3787 independent reflections

  • 1974 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.222

  • S = 1.00

  • 3787 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 1.958 (5)
Zn1—N1 2.014 (6)
Zn1—Br1 2.3429 (16)
Zn1—Br2 2.4046 (18)
O1—Zn1—N1 95.3 (2)
O1—Zn1—Br1 115.26 (16)
N1—Zn1—Br1 113.83 (19)
O1—Zn1—Br2 113.02 (17)
N1—Zn1—Br2 113.09 (19)
Br1—Zn1—Br2 106.38 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1i 0.90 1.84 2.697 (8) 158
N2—H2B⋯O2i 0.90 2.40 3.005 (8) 124
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have been widely used as versatile ligands in coordination chemistry (Biswas et al., 2008; Wu et al., 2008; Kawamoto et al., 2008; Ali et al., 2008; Habibi et al., 2007), and their metal complexes are of great interest in many fields (Chen et al., 2008; Yuan et al., 2007; Tomat et al., 2007; Darensbourg & Frantz, 2007). Zinc(II) is an important element in biological systems, functions as the active site of hydrolytic enzymes, such as carboxypeptidase and carbonic anhydrase where it is in a hard-donor coordination environment of nitrogen and oxygen ligands (Lipscomb & Sträter, 1996). In this paper, a new zinc(II) complex, (I), Fig. 1, with the Schiff base ligand 2-ethoxy-6-[(3-methylaminopropylimino)methyl]phenol has been synthesized and structurally characterized.

The ZnII atom in (I) is four-coordinated by the imine N and phenolate O atoms of the zwitterionic form of the Schiff base ligand and by two Br- ions in a tetrahedral coordination geometry. The coordinate bond lengths (Table 1) are typical and comparable to the corresponding values observed in other similar zinc(II) Schiff base complexes (Zhu et al., 2007; Wei et al., 2007; Qiu, 2006).

In the crystal structure, adjacent molecules are linked through intermolecular N–H···O hydrogen bonds (Table 2), forming chains running along the b axis (Fig. 2).

Related literature top

For background to the chemistry of the Schiff base complexes, see: Ali et al. (2008); Biswas et al. (2008); Chen et al. (2008); Darensbourg & Frantz (2007); Habibi et al. (2007); Kawamoto et al. (2008); Lipscomb & Sträter (1996); Tomat et al. (2007); Wu et al. (2008); Yuan et al. (2007). For related structures, see: Qiu (2006); Wei et al. (2007); Zhu et al. (2007).

Experimental top

The Schiff base compound was prepared by the condensation of equimolar amounts of 3-ethoxysalicylaldehyde with N-methylpropane-1,3-diamine in a methanol solution. The complex was prepared by the following method. To an anhydrous methanol solution (5 ml) of ZnBr2 (22.5 mg, 0.1 mmol) was added a methanol solution (10 ml) of the Schiff base compound (23.6 mg, 0.1 mmol) with stirring. The mixture was stirred for 30 min at room temperature and filtered. Upon keeping the filtrate in air for a few days, colorless block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.93–0.97 Å, N–H distances of 0.90 Å, and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(methyl C). The structure contains a solvent accessible void of 58 Å3, which might accommodate a disordered methanol solvent molecule.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the c axis.
Dibromido{(E)-2-ethoxy-6-[3- (methylammonio)propyliminomethyl]phenolato}zinc(II) top
Crystal data top
[ZnBr2(C13H20N2O2)]F(000) = 1824
Mr = 461.50Dx = 1.748 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1842 reflections
a = 17.884 (3) Åθ = 2.4–24.1°
b = 14.374 (2) ŵ = 5.96 mm1
c = 14.992 (2) ÅT = 298 K
β = 114.482 (3)°Block, colorless
V = 3507.4 (9) Å30.23 × 0.21 × 0.21 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3787 independent reflections
Radiation source: fine-focus sealed tube1974 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2222
Tmin = 0.341, Tmax = 0.368k = 1818
14138 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.222H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1251P)2]
where P = (Fo2 + 2Fc2)/3
3787 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 1.12 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
[ZnBr2(C13H20N2O2)]V = 3507.4 (9) Å3
Mr = 461.50Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.884 (3) ŵ = 5.96 mm1
b = 14.374 (2) ÅT = 298 K
c = 14.992 (2) Å0.23 × 0.21 × 0.21 mm
β = 114.482 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3787 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1974 reflections with I > 2σ(I)
Tmin = 0.341, Tmax = 0.368Rint = 0.068
14138 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.222H-atom parameters constrained
S = 1.00Δρmax = 1.12 e Å3
3787 reflectionsΔρmin = 0.90 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.27393 (5)0.33839 (6)0.31911 (7)0.0412 (3)
Br10.41500 (7)0.37049 (9)0.38443 (10)0.0911 (5)
Br20.22492 (8)0.35250 (9)0.14417 (9)0.0842 (4)
O10.2106 (3)0.4129 (3)0.3728 (4)0.0457 (13)
O20.1034 (3)0.5348 (4)0.3750 (4)0.0524 (15)
N10.2463 (4)0.2150 (4)0.3615 (5)0.0435 (15)
N20.2234 (4)0.0849 (4)0.0895 (5)0.0506 (17)
H2A0.25080.13330.07930.061*
H2B0.25360.03350.09450.061*
C10.1272 (5)0.2825 (6)0.3792 (6)0.049 (2)
C20.1426 (4)0.3790 (5)0.3754 (5)0.0394 (17)
C30.0835 (5)0.4402 (6)0.3797 (5)0.047 (2)
C40.0121 (5)0.4091 (8)0.3825 (6)0.065 (3)
H40.02720.45170.38190.078*
C50.0022 (6)0.3135 (8)0.3860 (7)0.074 (3)
H50.05090.29300.38790.089*
C60.0554 (6)0.2503 (8)0.3869 (7)0.068 (3)
H60.04730.18700.39240.082*
C70.1826 (6)0.2104 (5)0.3813 (6)0.055 (2)
H70.17130.15200.39950.066*
C80.2915 (6)0.1308 (6)0.3638 (7)0.057 (2)
H8A0.26410.07830.37810.069*
H8B0.34620.13540.41620.069*
C90.2982 (5)0.1139 (6)0.2700 (6)0.055 (2)
H9A0.33200.05930.27670.067*
H9B0.32530.16650.25570.067*
C100.2170 (5)0.0998 (6)0.1873 (7)0.057 (2)
H10A0.18280.15360.18180.068*
H10B0.19060.04610.20090.068*
C110.1458 (5)0.0750 (7)0.0041 (7)0.065 (3)
H11A0.12110.01660.00730.097*
H11B0.15540.07710.05430.097*
H11C0.10970.12490.00290.097*
C120.0459 (6)0.6012 (7)0.3834 (7)0.065 (3)
H12A0.04130.59240.44500.079*
H12B0.00790.59220.33040.079*
C130.0754 (6)0.6948 (8)0.3788 (8)0.084 (4)
H13A0.12950.70250.42990.127*
H13B0.03890.73950.38720.127*
H13C0.07710.70410.31630.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0429 (5)0.0361 (5)0.0501 (6)0.0014 (4)0.0248 (4)0.0029 (4)
Br10.0580 (7)0.0846 (8)0.1261 (11)0.0068 (5)0.0335 (7)0.0125 (7)
Br20.0864 (8)0.0953 (9)0.0692 (8)0.0150 (6)0.0305 (6)0.0043 (6)
O10.042 (3)0.036 (3)0.071 (4)0.001 (2)0.034 (3)0.006 (3)
O20.046 (3)0.061 (4)0.051 (4)0.019 (3)0.021 (3)0.007 (3)
N10.049 (4)0.038 (4)0.042 (4)0.000 (3)0.017 (3)0.001 (3)
N20.050 (4)0.035 (4)0.061 (5)0.005 (3)0.018 (4)0.006 (3)
C10.046 (5)0.064 (6)0.041 (5)0.017 (4)0.022 (4)0.006 (4)
C20.040 (4)0.046 (4)0.030 (4)0.000 (3)0.012 (3)0.002 (3)
C30.044 (5)0.067 (6)0.032 (5)0.012 (4)0.017 (4)0.001 (4)
C40.039 (5)0.113 (9)0.050 (6)0.013 (5)0.026 (4)0.012 (5)
C50.057 (6)0.103 (9)0.069 (7)0.030 (6)0.033 (5)0.011 (6)
C60.066 (6)0.085 (7)0.066 (7)0.013 (6)0.039 (6)0.002 (6)
C70.084 (7)0.029 (4)0.053 (6)0.005 (4)0.030 (5)0.006 (4)
C80.078 (6)0.030 (4)0.057 (6)0.009 (4)0.021 (5)0.008 (4)
C90.051 (5)0.042 (5)0.061 (6)0.002 (4)0.012 (4)0.019 (4)
C100.042 (5)0.043 (5)0.078 (7)0.001 (4)0.018 (5)0.014 (5)
C110.059 (6)0.065 (6)0.064 (6)0.005 (5)0.019 (5)0.010 (5)
C120.070 (6)0.078 (7)0.055 (6)0.038 (5)0.032 (5)0.006 (5)
C130.084 (7)0.074 (7)0.071 (7)0.038 (6)0.007 (6)0.024 (6)
Geometric parameters (Å, º) top
Zn1—O11.958 (5)C5—H50.9300
Zn1—N12.014 (6)C6—H60.9300
Zn1—Br12.3429 (16)C7—H70.9300
Zn1—Br22.4046 (18)C8—C91.480 (12)
O1—C21.325 (8)C8—H8A0.9700
O2—C31.414 (11)C8—H8B0.9700
O2—C121.446 (9)C9—C101.481 (11)
N1—C71.293 (11)C9—H9A0.9700
N1—C81.447 (10)C9—H9B0.9700
N2—C111.453 (10)C10—H10A0.9700
N2—C101.532 (11)C10—H10B0.9700
N2—H2A0.9000C11—H11A0.9600
N2—H2B0.9000C11—H11B0.9600
C1—C61.414 (12)C11—H11C0.9600
C1—C21.420 (11)C12—C131.456 (15)
C1—C71.423 (12)C12—H12A0.9700
C2—C31.396 (11)C12—H12B0.9700
C3—C41.370 (12)C13—H13A0.9600
C4—C51.403 (15)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C5—C61.369 (14)
O1—Zn1—N195.3 (2)C1—C7—H7115.5
O1—Zn1—Br1115.26 (16)N1—C8—C9112.2 (7)
N1—Zn1—Br1113.83 (19)N1—C8—H8A109.2
O1—Zn1—Br2113.02 (17)C9—C8—H8A109.2
N1—Zn1—Br2113.09 (19)N1—C8—H8B109.2
Br1—Zn1—Br2106.38 (6)C9—C8—H8B109.2
C2—O1—Zn1120.3 (4)H8A—C8—H8B107.9
C3—O2—C12115.4 (7)C8—C9—C10112.4 (8)
C7—N1—C8119.3 (7)C8—C9—H9A109.1
C7—N1—Zn1118.1 (5)C10—C9—H9A109.1
C8—N1—Zn1122.5 (6)C8—C9—H9B109.1
C11—N2—C10115.7 (7)C10—C9—H9B109.1
C11—N2—H2A108.4H9A—C9—H9B107.9
C10—N2—H2A108.4C9—C10—N2112.7 (7)
C11—N2—H2B108.4C9—C10—H10A109.1
C10—N2—H2B108.4N2—C10—H10A109.1
H2A—N2—H2B107.4C9—C10—H10B109.1
C6—C1—C2121.3 (8)N2—C10—H10B109.1
C6—C1—C7114.0 (8)H10A—C10—H10B107.8
C2—C1—C7124.6 (7)N2—C11—H11A109.5
O1—C2—C3119.4 (7)N2—C11—H11B109.5
O1—C2—C1123.7 (7)H11A—C11—H11B109.5
C3—C2—C1116.8 (7)N2—C11—H11C109.5
C4—C3—C2121.9 (9)H11A—C11—H11C109.5
C4—C3—O2124.8 (8)H11B—C11—H11C109.5
C2—C3—O2113.1 (7)O2—C12—C13108.8 (8)
C3—C4—C5120.5 (9)O2—C12—H12A109.9
C3—C4—H4119.8C13—C12—H12A109.9
C5—C4—H4119.8O2—C12—H12B109.9
C6—C5—C4120.1 (9)C13—C12—H12B109.9
C6—C5—H5119.9H12A—C12—H12B108.3
C4—C5—H5119.9C12—C13—H13A109.5
C5—C6—C1119.2 (9)C12—C13—H13B109.5
C5—C6—H6120.4H13A—C13—H13B109.5
C1—C6—H6120.4C12—C13—H13C109.5
N1—C7—C1129.0 (8)H13A—C13—H13C109.5
N1—C7—H7115.5H13B—C13—H13C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.901.842.697 (8)158
N2—H2B···O2i0.902.403.005 (8)124
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnBr2(C13H20N2O2)]
Mr461.50
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)17.884 (3), 14.374 (2), 14.992 (2)
β (°) 114.482 (3)
V3)3507.4 (9)
Z8
Radiation typeMo Kα
µ (mm1)5.96
Crystal size (mm)0.23 × 0.21 × 0.21
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.341, 0.368
No. of measured, independent and
observed [I > 2σ(I)] reflections
14138, 3787, 1974
Rint0.068
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.222, 1.00
No. of reflections3787
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 0.90

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O11.958 (5)Zn1—Br12.3429 (16)
Zn1—N12.014 (6)Zn1—Br22.4046 (18)
O1—Zn1—N195.3 (2)O1—Zn1—Br2113.02 (17)
O1—Zn1—Br1115.26 (16)N1—Zn1—Br2113.09 (19)
N1—Zn1—Br1113.83 (19)Br1—Zn1—Br2106.38 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.901.842.697 (8)158
N2—H2B···O2i0.902.403.005 (8)124
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

References

First citationAli, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBiswas, C., Drew, M. G. B. & Ghosh, A. (2008). Inorg. Chem. 47, 4513–4519.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDarensbourg, D. J. & Frantz, E. B. (2007). Inorg. Chem. 46, 5967–5978.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHabibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905–m2906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKawamoto, T., Nishiwaki, M., Tsunekawa, Y., Nozaki, K. & Konno, T. (2008). Inorg. Chem. 47, 3095–3104.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375–2434.  CrossRef PubMed CAS Web of Science Google Scholar
First citationQiu, X.-Y. (2006). Acta Cryst. E62, m717–m718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomat, E., Cuesta, L., Lynch, V. M. & Sessler, J. L. (2007). Inorg. Chem. 46, 6224–6226.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654–m655.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, J.-C., Liu, S.-X., Keene, T. D., Neels, A., Mereacre, V., Powell, A. K. & Decurtins, S. (2008). Inorg. Chem. 47, 3452–3459.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYuan, M., Zhao, F., Zhang, W., Wang, Z.-M. & Gao, S. (2007). Inorg. Chem. 46, 11235–11242.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m1431–m1432.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1092-m1093
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds