metal-organic compounds
Bis{(E)-2-ethoxy-6-[2-(ethylammonio)ethyliminomethyl]phenolato}nickel(II) bis(perchlorate)
aKey Laboratory of Surface and Interface Science of Henan, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: xuewen_zhu@126.com
In the title centrosymmetric mononuclear nickel(II) complex, [Ni(C13H20N2O2)2](ClO4)2, the NiII atom is four-coordinated by the imine N and phenolate O atoms of the zwitterionic forms of two Schiff base ligands in a square-planar coordination geometry. In the molecules are linked through intermolecular N—H⋯O hydrogen bonds, forming chains running along the a axis.
Related literature
For background to the chemistry of the Schiff base complexes, see: Ali et al. (2008); Biswas et al. (2008); Carlsson et al. (2002, 2004); Chen et al. (2008); Darensbourg & Frantz (2007); Habibi et al. (2007); Kawamoto et al. (2008); Tomat et al. (2007); Wu et al. (2008); Yuan et al. (2007). For related structures, see: Ma et al. (2008); Skovsgaard et al. (2005); Zhao (2007).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808023684/sj2526sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808023684/sj2526Isup2.hkl
The Schiff base compound was prepared by the condensation of equimolar amounts of 3-ethoxysalicylaldehyde with N-ethylethane-1,2-diamine in a methanol solution. The complex was prepared by the following method. To a methanol solution (5 ml) of Ni(ClO4)2.6H2O (36.6 mg, 0.1 mmol) was added a methanol solution (10 ml) of the Schiff base compound (23.6 mg, 0.1 mmol) with stirring. The mixture was stirred for 30 min at room temperature and filtered. Upon keeping the filtrate in air for a few days, red block-shaped crystals formed at the bottom of the vessel on slow evaporation of the solvent.
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.93–0.97 Å, N–H distances of 0.90 Å, and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(methyl C).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ni(C13H20N2O2)2](ClO4)2 | F(000) = 764 |
Mr = 730.23 | Dx = 1.564 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3252 reflections |
a = 8.386 (3) Å | θ = 2.5–25.4° |
b = 8.566 (3) Å | µ = 0.87 mm−1 |
c = 21.862 (6) Å | T = 298 K |
β = 99.068 (4)° | Block, red |
V = 1550.8 (9) Å3 | 0.23 × 0.20 × 0.20 mm |
Z = 2 |
Bruker APEXII CCD area-detector diffractometer | 3363 independent reflections |
Radiation source: fine-focus sealed tube | 2770 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
ω scans | θmax = 27.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −10→10 |
Tmin = 0.826, Tmax = 0.846 | k = −10→10 |
12509 measured reflections | l = −27→27 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0512P)2 + 0.4599P] where P = (Fo2 + 2Fc2)/3 |
3363 reflections | (Δ/σ)max = 0.001 |
207 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
[Ni(C13H20N2O2)2](ClO4)2 | V = 1550.8 (9) Å3 |
Mr = 730.23 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.386 (3) Å | µ = 0.87 mm−1 |
b = 8.566 (3) Å | T = 298 K |
c = 21.862 (6) Å | 0.23 × 0.20 × 0.20 mm |
β = 99.068 (4)° |
Bruker APEXII CCD area-detector diffractometer | 3363 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 2770 reflections with I > 2σ(I) |
Tmin = 0.826, Tmax = 0.846 | Rint = 0.041 |
12509 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.102 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.28 e Å−3 |
3363 reflections | Δρmin = −0.34 e Å−3 |
207 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 1.0000 | 0.5000 | 0.0000 | 0.02592 (13) | |
Cl1 | 0.39043 (7) | 0.71469 (7) | 0.09059 (3) | 0.03882 (17) | |
O1 | 1.06353 (18) | 0.41002 (18) | 0.07614 (7) | 0.0333 (4) | |
O2 | 1.1550 (2) | 0.2125 (2) | 0.16406 (8) | 0.0451 (4) | |
O3 | 0.4539 (3) | 0.6169 (2) | 0.04665 (9) | 0.0624 (6) | |
O4 | 0.5075 (2) | 0.8315 (2) | 0.11174 (9) | 0.0547 (5) | |
O5 | 0.3594 (3) | 0.6194 (2) | 0.14062 (9) | 0.0652 (6) | |
O6 | 0.2480 (3) | 0.7874 (3) | 0.06108 (13) | 0.0790 (7) | |
N1 | 0.8973 (2) | 0.6697 (2) | 0.03503 (8) | 0.0272 (4) | |
N2 | 0.6314 (2) | 0.7051 (2) | −0.07021 (9) | 0.0342 (4) | |
H2A | 0.6031 | 0.6259 | −0.0471 | 0.041* | |
H2B | 0.7139 | 0.6718 | −0.0886 | 0.041* | |
C1 | 0.8960 (3) | 0.5512 (3) | 0.13583 (10) | 0.0307 (5) | |
C2 | 1.0022 (3) | 0.4303 (3) | 0.12705 (9) | 0.0281 (5) | |
C3 | 1.0473 (3) | 0.3232 (3) | 0.17637 (10) | 0.0322 (5) | |
C4 | 0.9828 (3) | 0.3361 (3) | 0.22998 (10) | 0.0385 (6) | |
H4 | 1.0109 | 0.2640 | 0.2616 | 0.046* | |
C5 | 0.8759 (3) | 0.4560 (3) | 0.23756 (11) | 0.0436 (6) | |
H5 | 0.8327 | 0.4634 | 0.2741 | 0.052* | |
C6 | 0.8344 (3) | 0.5623 (3) | 0.19183 (11) | 0.0399 (6) | |
H6 | 0.7644 | 0.6433 | 0.1976 | 0.048* | |
C7 | 0.8602 (3) | 0.6692 (3) | 0.09004 (10) | 0.0308 (5) | |
H7 | 0.8036 | 0.7555 | 0.1010 | 0.037* | |
C8 | 0.8632 (3) | 0.8182 (2) | 0.00079 (11) | 0.0317 (5) | |
H8A | 0.9308 | 0.8242 | −0.0313 | 0.038* | |
H8B | 0.8923 | 0.9044 | 0.0291 | 0.038* | |
C9 | 0.6887 (3) | 0.8363 (3) | −0.02871 (11) | 0.0333 (5) | |
H9A | 0.6219 | 0.8436 | 0.0036 | 0.040* | |
H9B | 0.6765 | 0.9328 | −0.0522 | 0.040* | |
C10 | 0.4917 (3) | 0.7422 (3) | −0.11922 (13) | 0.0487 (7) | |
H10A | 0.5245 | 0.8215 | −0.1464 | 0.058* | |
H10B | 0.4629 | 0.6493 | −0.1439 | 0.058* | |
C11 | 0.3475 (3) | 0.7982 (4) | −0.09446 (14) | 0.0568 (8) | |
H11A | 0.3152 | 0.7211 | −0.0670 | 0.085* | |
H11B | 0.2610 | 0.8158 | −0.1281 | 0.085* | |
H11C | 0.3728 | 0.8940 | −0.0723 | 0.085* | |
C12 | 1.1937 (3) | 0.0850 (3) | 0.20663 (12) | 0.0465 (6) | |
H12A | 1.2110 | 0.1255 | 0.2486 | 0.056* | |
H12B | 1.2937 | 0.0372 | 0.1992 | 0.056* | |
C13 | 1.0661 (5) | −0.0355 (4) | 0.2011 (2) | 0.0790 (11) | |
H13A | 0.9690 | 0.0091 | 0.2116 | 0.119* | |
H13B | 1.1007 | −0.1201 | 0.2288 | 0.119* | |
H13C | 1.0458 | −0.0737 | 0.1593 | 0.119* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0286 (2) | 0.0257 (2) | 0.0236 (2) | 0.00323 (15) | 0.00463 (15) | 0.00429 (15) |
Cl1 | 0.0470 (4) | 0.0310 (3) | 0.0392 (3) | −0.0058 (2) | 0.0091 (3) | −0.0041 (2) |
O1 | 0.0407 (9) | 0.0352 (9) | 0.0255 (7) | 0.0112 (7) | 0.0096 (7) | 0.0078 (6) |
O2 | 0.0555 (11) | 0.0445 (10) | 0.0376 (9) | 0.0190 (8) | 0.0145 (8) | 0.0175 (8) |
O3 | 0.1038 (17) | 0.0375 (10) | 0.0533 (12) | −0.0086 (11) | 0.0357 (11) | −0.0095 (9) |
O4 | 0.0541 (12) | 0.0456 (11) | 0.0639 (13) | −0.0157 (9) | 0.0075 (9) | −0.0132 (9) |
O5 | 0.1053 (17) | 0.0525 (12) | 0.0438 (11) | −0.0208 (12) | 0.0300 (11) | −0.0021 (9) |
O6 | 0.0493 (13) | 0.0656 (14) | 0.116 (2) | −0.0016 (11) | −0.0058 (12) | 0.0108 (14) |
N1 | 0.0264 (9) | 0.0250 (9) | 0.0292 (9) | −0.0002 (7) | 0.0015 (7) | 0.0020 (7) |
N2 | 0.0319 (10) | 0.0294 (10) | 0.0408 (11) | 0.0026 (8) | 0.0038 (8) | −0.0007 (8) |
C1 | 0.0301 (11) | 0.0345 (12) | 0.0277 (11) | −0.0006 (9) | 0.0048 (9) | −0.0003 (9) |
C2 | 0.0290 (11) | 0.0310 (11) | 0.0244 (10) | −0.0028 (9) | 0.0043 (9) | 0.0013 (9) |
C3 | 0.0323 (12) | 0.0354 (12) | 0.0284 (11) | −0.0017 (10) | 0.0030 (9) | 0.0047 (9) |
C4 | 0.0413 (14) | 0.0464 (14) | 0.0271 (11) | −0.0036 (11) | 0.0034 (10) | 0.0079 (10) |
C5 | 0.0465 (15) | 0.0580 (16) | 0.0288 (12) | 0.0011 (13) | 0.0132 (11) | 0.0006 (11) |
C6 | 0.0391 (13) | 0.0466 (14) | 0.0356 (13) | 0.0061 (11) | 0.0107 (10) | −0.0031 (11) |
C7 | 0.0292 (11) | 0.0299 (12) | 0.0333 (12) | 0.0024 (9) | 0.0048 (9) | −0.0033 (9) |
C8 | 0.0359 (12) | 0.0224 (11) | 0.0362 (12) | −0.0029 (9) | 0.0033 (10) | 0.0010 (9) |
C9 | 0.0374 (13) | 0.0232 (11) | 0.0387 (12) | 0.0043 (9) | 0.0042 (10) | 0.0019 (9) |
C10 | 0.0474 (15) | 0.0519 (16) | 0.0429 (14) | −0.0002 (13) | −0.0052 (12) | 0.0011 (12) |
C11 | 0.0354 (14) | 0.0620 (19) | 0.068 (2) | −0.0005 (13) | −0.0059 (13) | 0.0023 (15) |
C12 | 0.0508 (16) | 0.0441 (15) | 0.0445 (14) | 0.0123 (12) | 0.0072 (12) | 0.0191 (12) |
C13 | 0.078 (2) | 0.0510 (19) | 0.107 (3) | −0.0058 (18) | 0.011 (2) | 0.010 (2) |
Ni1—O1i | 1.836 (2) | C4—H4 | 0.9300 |
Ni1—O1 | 1.836 (2) | C5—C6 | 1.357 (4) |
Ni1—N1i | 1.910 (2) | C5—H5 | 0.9300 |
Ni1—N1 | 1.910 (2) | C6—H6 | 0.9300 |
Cl1—O6 | 1.410 (2) | C7—H7 | 0.9300 |
Cl1—O5 | 1.421 (2) | C8—C9 | 1.512 (3) |
Cl1—O4 | 1.4268 (18) | C8—H8A | 0.9700 |
Cl1—O3 | 1.4384 (19) | C8—H8B | 0.9700 |
O1—C2 | 1.309 (2) | C9—H9A | 0.9700 |
O2—C3 | 1.365 (3) | C9—H9B | 0.9700 |
O2—C12 | 1.439 (3) | C10—C11 | 1.481 (4) |
N1—C7 | 1.289 (3) | C10—H10A | 0.9700 |
N1—C8 | 1.481 (3) | C10—H10B | 0.9700 |
N2—C9 | 1.476 (3) | C11—H11A | 0.9600 |
N2—C10 | 1.492 (3) | C11—H11B | 0.9600 |
N2—H2A | 0.9000 | C11—H11C | 0.9600 |
N2—H2B | 0.9000 | C12—C13 | 1.478 (4) |
C1—C2 | 1.399 (3) | C12—H12A | 0.9700 |
C1—C6 | 1.405 (3) | C12—H12B | 0.9700 |
C1—C7 | 1.421 (3) | C13—H13A | 0.9600 |
C2—C3 | 1.421 (3) | C13—H13B | 0.9600 |
C3—C4 | 1.370 (3) | C13—H13C | 0.9600 |
C4—C5 | 1.390 (4) | ||
O1i—Ni1—O1 | 180.0 | C1—C6—H6 | 119.7 |
O1i—Ni1—N1i | 92.33 (7) | N1—C7—C1 | 127.2 (2) |
O1—Ni1—N1i | 87.67 (7) | N1—C7—H7 | 116.4 |
O1i—Ni1—N1 | 87.67 (7) | C1—C7—H7 | 116.4 |
O1—Ni1—N1 | 92.33 (7) | N1—C8—C9 | 113.63 (18) |
N1i—Ni1—N1 | 180.0 | N1—C8—H8A | 108.8 |
O6—Cl1—O5 | 111.19 (15) | C9—C8—H8A | 108.8 |
O6—Cl1—O4 | 109.16 (13) | N1—C8—H8B | 108.8 |
O5—Cl1—O4 | 110.69 (13) | C9—C8—H8B | 108.8 |
O6—Cl1—O3 | 109.13 (15) | H8A—C8—H8B | 107.7 |
O5—Cl1—O3 | 108.15 (12) | N2—C9—C8 | 112.54 (18) |
O4—Cl1—O3 | 108.46 (13) | N2—C9—H9A | 109.1 |
C2—O1—Ni1 | 128.20 (14) | C8—C9—H9A | 109.1 |
C3—O2—C12 | 119.27 (19) | N2—C9—H9B | 109.1 |
C7—N1—C8 | 114.76 (18) | C8—C9—H9B | 109.1 |
C7—N1—Ni1 | 124.19 (15) | H9A—C9—H9B | 107.8 |
C8—N1—Ni1 | 120.95 (14) | C11—C10—N2 | 113.6 (2) |
C9—N2—C10 | 114.96 (19) | C11—C10—H10A | 108.8 |
C9—N2—H2A | 108.5 | N2—C10—H10A | 108.8 |
C10—N2—H2A | 108.5 | C11—C10—H10B | 108.8 |
C9—N2—H2B | 108.5 | N2—C10—H10B | 108.8 |
C10—N2—H2B | 108.5 | H10A—C10—H10B | 107.7 |
H2A—N2—H2B | 107.5 | C10—C11—H11A | 109.5 |
C2—C1—C6 | 119.9 (2) | C10—C11—H11B | 109.5 |
C2—C1—C7 | 119.90 (19) | H11A—C11—H11B | 109.5 |
C6—C1—C7 | 120.0 (2) | C10—C11—H11C | 109.5 |
O1—C2—C1 | 123.96 (19) | H11A—C11—H11C | 109.5 |
O1—C2—C3 | 117.8 (2) | H11B—C11—H11C | 109.5 |
C1—C2—C3 | 118.25 (19) | O2—C12—C13 | 113.0 (2) |
O2—C3—C4 | 126.0 (2) | O2—C12—H12A | 109.0 |
O2—C3—C2 | 113.84 (19) | C13—C12—H12A | 109.0 |
C4—C3—C2 | 120.2 (2) | O2—C12—H12B | 109.0 |
C3—C4—C5 | 120.7 (2) | C13—C12—H12B | 109.0 |
C3—C4—H4 | 119.7 | H12A—C12—H12B | 107.8 |
C5—C4—H4 | 119.7 | C12—C13—H13A | 109.5 |
C6—C5—C4 | 120.2 (2) | C12—C13—H13B | 109.5 |
C6—C5—H5 | 119.9 | H13A—C13—H13B | 109.5 |
C4—C5—H5 | 119.9 | C12—C13—H13C | 109.5 |
C5—C6—C1 | 120.7 (2) | H13A—C13—H13C | 109.5 |
C5—C6—H6 | 119.7 | H13B—C13—H13C | 109.5 |
Symmetry code: (i) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···O2i | 0.90 | 2.34 | 3.013 (3) | 131 |
N2—H2B···O1i | 0.90 | 1.97 | 2.764 (2) | 146 |
N2—H2A···O3 | 0.90 | 2.56 | 3.242 (3) | 132 |
N2—H2A···O3ii | 0.90 | 2.13 | 2.916 (3) | 145 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C13H20N2O2)2](ClO4)2 |
Mr | 730.23 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 8.386 (3), 8.566 (3), 21.862 (6) |
β (°) | 99.068 (4) |
V (Å3) | 1550.8 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.87 |
Crystal size (mm) | 0.23 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.826, 0.846 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12509, 3363, 2770 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.102, 1.04 |
No. of reflections | 3363 |
No. of parameters | 207 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.34 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Ni1—O1 | 1.836 (2) | Ni1—N1 | 1.910 (2) |
O1i—Ni1—O1 | 180.0 | O1—Ni1—N1 | 92.33 (7) |
O1i—Ni1—N1 | 87.67 (7) | N1i—Ni1—N1 | 180.0 |
Symmetry code: (i) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···O2i | 0.90 | 2.34 | 3.013 (3) | 131 |
N2—H2B···O1i | 0.90 | 1.97 | 2.764 (2) | 146 |
N2—H2A···O3 | 0.90 | 2.56 | 3.242 (3) | 132 |
N2—H2A···O3ii | 0.90 | 2.13 | 2.916 (3) | 145 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y+1, −z. |
References
Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Biswas, C., Drew, M. G. B. & Ghosh, A. (2008). Inorg. Chem. 47, 4513–4519. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carlsson, H., Haukka, M., Bousseksou, A., Latour, J.-M. & Nordlander, E. (2004). Inorg. Chem. 43, 8252–8262. Web of Science CSD CrossRef PubMed CAS Google Scholar
Carlsson, H., Haukka, M. & Nordlander, E. (2002). Inorg. Chem. 41, 4981–4983. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171. Web of Science CSD CrossRef PubMed CAS Google Scholar
Darensbourg, D. J. & Frantz, E. B. (2007). Inorg. Chem. 46, 5967–5978. Web of Science CSD CrossRef PubMed CAS Google Scholar
Habibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905–m2906. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kawamoto, T., Nishiwaki, M., Tsunekawa, Y., Nozaki, K. & Konno, T. (2008). Inorg. Chem. 47, 3095–3104. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ma, H.-B., Jiang, Y.-X. & Lei, J.-T. (2008). Acta Cryst. E64, m597–m598. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Skovsgaard, S., Bond, A. D. & McKenzie, C. J. (2005). Acta Cryst. E61, m135–m137. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tomat, E., Cuesta, L., Lynch, V. M. & Sessler, J. L. (2007). Inorg. Chem. 46, 6224–6226. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wu, J.-C., Liu, S.-X., Keene, T. D., Neels, A., Mereacre, V., Powell, A. K. & Decurtins, S. (2008). Inorg. Chem. 47, 3452–3459. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yuan, M., Zhao, F., Zhang, W., Wang, Z.-M. & Gao, S. (2007). Inorg. Chem. 46, 11235–11242. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhao, X.-F. (2007). Acta Cryst. E63, m704–m705. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases have widely been used as versatile ligands in coordination chemistry (Biswas et al., 2008; Wu et al., 2008; Kawamoto et al., 2008; Ali et al., 2008; Habibi et al., 2007), and their metal complexes are of great interest in many fields (Chen et al., 2008; Yuan et al., 2007; Tomat et al., 2007; Darensbourg & Frantz, 2007). Nickel(II) is present in the active sites of urease (Carlsson et al., 2002, 2004). In this paper, a new nickel(II) complex, (I), Fig. 1, with the Schiff base ligand (E)-2-ethoxy-6-((3-(methylamino)propylimino)methyl)phenol has been synthesized and structurally characterized.
Complex (I) consists of a centrosymmetric mononuclear nickel(II) complex cation and two perchlorate anions. The NiII atom in the cation, lies on an inversion centre, with the asymmetric unit made up from one half of the Ni(II) complex and one perchlorate anion. The Ni(II) atom is four-coordinated by two imine N and two phenolate O atoms from two zwitterionic Schiff base ligands in a square-planar coordination geometry. The coordinate bond lengths (Table 1) are typical and comparable to the corresponding values observed in similar nickel(II) Schiff base complexes (Zhao, 2007; Skovsgaard et al., 2005; Ma et al., 2008).
In the crystal structure, molecules are linked through intermolecular N–H···O hydrogen bonds (Table 2), forming chains running along the a axis (Fig. 2).