organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 6-bromo-7-meth­­oxy-1,3-benzodioxole-5-carboxyl­ate

aCollege of Life Science, China Jiliang University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: fuxianshu2003@yahoo.com.cn

(Received 26 May 2008; accepted 25 June 2008; online 5 July 2008)

The non-H atoms of the title compound, C10H9BrO5, are essentially coplanar, with the exception of the ester group [the O=C—O—C torsion angle is −143.4 (3)°].

Related literature

For related literature, see: Gerhard et al. (2003[Gerhard, B., Matthias, B., Petra, H. & Jürgen, H. (2003). Org. Synth. 79, 72-73.]); Song & Xiao (1982[Song, W. Z. & Xiao, P. G. (1982). Chin. Tradit. Herbal Drugs, 13, 40-43.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9BrO5

  • Mr = 289.08

  • Triclinic, [P \overline 1]

  • a = 7.6933 (12) Å

  • b = 8.0616 (13) Å

  • c = 9.7039 (15) Å

  • α = 105.062 (2)°

  • β = 91.667 (2)°

  • γ = 113.457 (2)°

  • V = 527.13 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.90 mm−1

  • T = 294 (2) K

  • 0.22 × 0.18 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.481, Tmax = 0.745

  • 2997 measured reflections

  • 2129 independent reflections

  • 1790 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.03

  • 2129 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), is a key intermediate for the preparation of biphenyl derivatives. These may act to moderate liver ailments and, thus, be effective in the treatment of acute and chronic hepatitis (Song & Xiao, 1982). The non-hydrogen atoms in (I), Fig. 1, are essentially co-planar with the exception of the ester group; the O1-C7-C6-C1 torsion angle is -143.4 (3)°.

Related literature top

For related literature, see: Gerhard et al. (2003); Song & Xiao (1982).

Experimental top

The title compound (I) was prepared according to the procedure of Gerhard et al. (2003). The reaction was initiated by the addition of one molar equivalent of methanol to one molar equivalent of 6-bromo-7-methoxybenzo[d][1,3]dioxole-5-carboxylic acid in dichloromethane solution and subsequent stirring at room temperature for 12 h. A white powder resulted (yield 88%) and single crystals suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution; m.p. 357 K.

Refinement top

All H atoms were positioned geometrically and refined in the riding approximation with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(carrier atom) and 1.5Ueq(methyl-C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.
Methyl 6-bromo-7-methoxy-1,3-benzodioxole-5-carboxylate top
Crystal data top
C10H9BrO5Z = 2
Mr = 289.08F(000) = 288
Triclinic, P1Dx = 1.821 Mg m3
Hall symbol: -P 1Melting point: 357 K
a = 7.6933 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0616 (13) ÅCell parameters from 1718 reflections
c = 9.7039 (15) Åθ = 2.9–26.3°
α = 105.062 (2)°µ = 3.90 mm1
β = 91.667 (2)°T = 294 K
γ = 113.457 (2)°Block, colorless
V = 527.13 (14) Å30.22 × 0.18 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2129 independent reflections
Radiation source: fine-focus sealed tube1790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 99
Tmin = 0.481, Tmax = 0.745k = 710
2997 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.1433P]
where P = (Fo2 + 2Fc2)/3
2129 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C10H9BrO5γ = 113.457 (2)°
Mr = 289.08V = 527.13 (14) Å3
Triclinic, P1Z = 2
a = 7.6933 (12) ÅMo Kα radiation
b = 8.0616 (13) ŵ = 3.90 mm1
c = 9.7039 (15) ÅT = 294 K
α = 105.062 (2)°0.22 × 0.18 × 0.08 mm
β = 91.667 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2129 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1790 reflections with I > 2σ(I)
Tmin = 0.481, Tmax = 0.745Rint = 0.017
2997 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.03Δρmax = 0.67 e Å3
2129 reflectionsΔρmin = 0.42 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.35252 (5)1.09757 (4)0.17325 (3)0.05585 (16)
O10.4065 (4)0.7325 (4)0.0679 (3)0.0741 (8)
O20.1696 (3)0.4868 (3)0.1074 (2)0.0508 (5)
O30.1494 (4)0.7239 (3)0.6385 (2)0.0559 (6)
O40.1874 (4)1.0334 (3)0.6889 (2)0.0591 (6)
O50.2912 (4)1.2488 (3)0.4655 (2)0.0627 (7)
C10.2920 (4)0.9669 (4)0.3141 (3)0.0379 (6)
C20.2692 (4)1.0680 (4)0.4491 (3)0.0411 (6)
C30.2222 (4)0.9728 (4)0.5508 (3)0.0393 (6)
C40.1986 (4)0.7872 (4)0.5206 (3)0.0394 (6)
C50.2151 (4)0.6849 (4)0.3893 (3)0.0399 (6)
H50.19450.55890.37110.048*
C60.2645 (4)0.7784 (4)0.2832 (3)0.0362 (6)
C70.2905 (4)0.6697 (4)0.1411 (3)0.0430 (6)
C80.1837 (6)0.3669 (5)0.0273 (4)0.0601 (9)
H8A0.17170.41820.10410.090*
H8B0.08310.24190.04670.090*
H8C0.30570.36080.02060.090*
C90.1525 (6)0.8809 (5)0.7482 (3)0.0559 (8)
H9A0.25260.91830.82790.067*
H9B0.03070.84720.78440.067*
C100.3163 (6)1.3726 (5)0.6061 (4)0.0565 (8)
H10A0.19531.34050.64120.085*
H10B0.36531.50080.60250.085*
H10C0.40531.36010.66970.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0810 (3)0.0505 (2)0.0386 (2)0.02651 (18)0.01453 (16)0.01850 (15)
O10.0930 (19)0.0607 (15)0.0638 (17)0.0274 (14)0.0469 (15)0.0149 (13)
O20.0636 (13)0.0423 (11)0.0361 (11)0.0205 (10)0.0119 (10)0.0025 (9)
O30.0856 (16)0.0481 (12)0.0368 (11)0.0277 (12)0.0195 (11)0.0165 (10)
O40.0962 (18)0.0519 (13)0.0328 (11)0.0369 (13)0.0203 (11)0.0079 (10)
O50.111 (2)0.0402 (12)0.0420 (12)0.0379 (13)0.0153 (13)0.0095 (10)
C10.0412 (14)0.0408 (15)0.0303 (13)0.0155 (12)0.0058 (11)0.0109 (11)
C20.0475 (16)0.0350 (14)0.0372 (15)0.0179 (12)0.0028 (12)0.0045 (12)
C30.0452 (15)0.0398 (14)0.0293 (13)0.0189 (12)0.0044 (11)0.0031 (11)
C40.0432 (15)0.0418 (15)0.0321 (14)0.0166 (12)0.0060 (11)0.0110 (12)
C50.0465 (15)0.0353 (14)0.0370 (15)0.0181 (12)0.0078 (12)0.0073 (11)
C60.0384 (14)0.0353 (14)0.0309 (13)0.0152 (11)0.0050 (11)0.0040 (11)
C70.0495 (16)0.0460 (16)0.0348 (15)0.0239 (14)0.0099 (13)0.0073 (13)
C80.076 (2)0.058 (2)0.0400 (17)0.0346 (18)0.0086 (16)0.0053 (15)
C90.076 (2)0.059 (2)0.0340 (16)0.0299 (17)0.0155 (15)0.0121 (14)
C100.080 (2)0.0455 (17)0.0461 (18)0.0349 (17)0.0083 (16)0.0027 (14)
Geometric parameters (Å, º) top
Br1—C11.895 (3)C3—C41.382 (4)
O1—C71.192 (4)C4—C51.366 (4)
O2—C71.336 (4)C5—C61.404 (4)
O2—C81.446 (4)C5—H50.9300
O3—C41.375 (3)C6—C71.496 (4)
O3—C91.418 (4)C8—H8A0.9600
O4—C31.375 (3)C8—H8B0.9600
O4—C91.424 (4)C8—H8C0.9600
O5—C21.363 (3)C9—H9A0.9700
O5—C101.421 (4)C9—H9B0.9700
C1—C61.396 (4)C10—H10A0.9600
C1—C21.408 (4)C10—H10B0.9600
C2—C31.374 (4)C10—H10C0.9600
C7—O2—C8115.8 (3)O1—C7—O2123.3 (3)
C4—O3—C9105.9 (2)O1—C7—C6125.9 (3)
C3—O4—C9105.8 (2)O2—C7—C6110.8 (2)
C2—O5—C10119.7 (2)O2—C8—H8A109.5
C6—C1—C2122.1 (3)O2—C8—H8B109.5
C6—C1—Br1121.5 (2)H8A—C8—H8B109.5
C2—C1—Br1116.4 (2)O2—C8—H8C109.5
O5—C2—C3126.2 (3)H8A—C8—H8C109.5
O5—C2—C1117.2 (3)H8B—C8—H8C109.5
C3—C2—C1116.6 (2)O3—C9—O4108.6 (2)
C2—C3—O4129.3 (3)O3—C9—H9A110.0
C2—C3—C4121.1 (2)O4—C9—H9A110.0
O4—C3—C4109.6 (2)O3—C9—H9B110.0
C5—C4—O3126.8 (3)O4—C9—H9B110.0
C5—C4—C3123.3 (3)H9A—C9—H9B108.3
O3—C4—C3109.8 (2)O5—C10—H10A109.5
C4—C5—C6117.0 (3)O5—C10—H10B109.5
C4—C5—H5121.5H10A—C10—H10B109.5
C6—C5—H5121.5O5—C10—H10C109.5
C1—C6—C5119.8 (2)H10A—C10—H10C109.5
C1—C6—C7122.8 (3)H10B—C10—H10C109.5
C5—C6—C7117.4 (2)
C10—O5—C2—C316.9 (5)O4—C3—C4—O30.4 (3)
C10—O5—C2—C1164.8 (3)O3—C4—C5—C6179.0 (3)
C6—C1—C2—O5177.1 (3)C3—C4—C5—C62.0 (4)
Br1—C1—C2—O50.5 (4)C2—C1—C6—C50.9 (4)
C6—C1—C2—C31.3 (4)Br1—C1—C6—C5178.4 (2)
Br1—C1—C2—C3179.0 (2)C2—C1—C6—C7179.2 (3)
O5—C2—C3—O40.2 (5)Br1—C1—C6—C73.3 (4)
C1—C2—C3—O4178.5 (3)C4—C5—C6—C10.8 (4)
O5—C2—C3—C4178.2 (3)C4—C5—C6—C7177.6 (3)
C1—C2—C3—C40.1 (4)C8—O2—C7—O11.4 (5)
C9—O4—C3—C2177.9 (3)C8—O2—C7—C6179.1 (2)
C9—O4—C3—C43.6 (3)C1—C6—C7—O134.9 (5)
C9—O3—C4—C5179.7 (3)C5—C6—C7—O1143.4 (3)
C9—O3—C4—C33.0 (3)C1—C6—C7—O2147.4 (3)
C2—C3—C4—C51.6 (4)C5—C6—C7—O234.2 (4)
O4—C3—C4—C5177.0 (3)C4—O3—C9—O45.2 (4)
C2—C3—C4—O3179.1 (3)C3—O4—C9—O35.5 (4)

Experimental details

Crystal data
Chemical formulaC10H9BrO5
Mr289.08
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.6933 (12), 8.0616 (13), 9.7039 (15)
α, β, γ (°)105.062 (2), 91.667 (2), 113.457 (2)
V3)527.13 (14)
Z2
Radiation typeMo Kα
µ (mm1)3.90
Crystal size (mm)0.22 × 0.18 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.481, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
2997, 2129, 1790
Rint0.017
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.03
No. of reflections2129
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.42

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was supported by the foundation of China Jiliang University.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGerhard, B., Matthias, B., Petra, H. & Jürgen, H. (2003). Org. Synth. 79, 72–73.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W. Z. & Xiao, P. G. (1982). Chin. Tradit. Herbal Drugs, 13, 40–43.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds