organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1411-o1412

2-[(E)-(5-Amino-2,3-di­phenyl­quinoxalin-6-yl)imino­meth­yl]-4-chloro­phenol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bChemistry Department, University of Bath, Claverton Down, Bath BA2 7AY, England
*Correspondence e-mail: hkfun@usm.my

(Received 28 June 2008; accepted 1 July 2008; online 5 July 2008)

The title Schiff base compound, C27H19ClN4O, features two intra­molecular O—H⋯N and N—H⋯N hydrogen bonds involving the hydr­oxy and amino groups to generate S(6) and S(5) ring motifs, respectively. In the crystal structure, weak inter­molecular N—H⋯O and C—H⋯N inter­actions, together with ππ contacts [centroid–centroid distances = 3.6294 (11)–3.6881 (11) Å], link neighboring mol­ecules.

Related literature

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Corden et al. (1996[Corden, J. P., Bishop, P. R., Errington, W. & Wallbridge, M. G. H. (1996). Acta Cryst. C52, 2777-2779.]); Fun et al. (2008[Fun, H.-K., Kia, R. & Raithby, P. R. (2008). Acta Cryst. E64, o1271-o1272.]); Govindasamy et al. (1999[Govindasamy, L., Velmurugan, D. & Rajendran, T. M. (1999). Acta Cryst. C55, 1368-1369.]). For applications and bioactivities, see: Anderson et al. (1997[Anderson, O. P., Cour, A. L., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. & Toftland, H. L. (1997). J. Chem. Soc. Dalton Trans. pp. 111-120.]); Cohen & Schmidt (1964[Cohen, M. D. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2041-2051.]); Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Li & Chang (1991[Li, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35-39.]); Shahrokhian et al. (2000[Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956-962.]); Unaleroglu & Hökelek (2002[Unaleroglu, C. & Hökelek, T. (2002). Spectrosc. Lett. 32, 317-326.]).

[Scheme 1]

Experimental

Crystal data
  • C27H19ClN4O

  • Mr = 450.91

  • Monoclinic, P 21 /c

  • a = 22.8728 (11) Å

  • b = 7.3068 (4) Å

  • c = 12.5632 (6) Å

  • β = 92.037 (2)°

  • V = 2098.32 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100.0 (1) K

  • 0.55 × 0.09 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.843, Tmax = 0.985

  • 25593 measured reflections

  • 6180 independent reflections

  • 4118 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.159

  • S = 1.01

  • 6180 reflections

  • 310 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.93 (3) 1.72 (3) 2.584 (2) 153 (2)
N4—H1N4⋯O1i 1.01 (3) 2.47 (3) 3.099 (2) 120.4 (18)
N4—H2N4⋯N2 1.04 (3) 2.31 (3) 2.750 (2) 104.3 (17)
C27—H27A⋯N3ii 0.93 2.62 3.373 (2) 138
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff bases are one of the most prevalent mixed-donor ligand types in coordination chemistry. The biologically activities of their complexes have been studied extensively over the last decades (Anderson et al., 1997; Corden et al., 1996; Govindasamy et al., 1999; Granovski et al., 1993; Li & Chang, 1991; Shahrokhian et al., 2000). 2-Hydroxy Schiff base ligands are of additional interest mainly due to the existence of O—H···N and O···H—N type hydrogen bonds and tautomerization between the phenol-imine and keto-amine forms (Unaleroglu & Hokelek, 2002; Fun et al., 2008). This type of tautomerism plays an important role for distinguishing their photochromic and thermochromic properties (Cohen & Schmidt, 1964). Knowing the solution and solid-state structures of free Schiff bases is important in view of the intramolecular hydrogen bonding and comparing conformation with that in the structures of Schiff base complexes. In view of the importance of these organic ligands, the title compound (I) was synthesized and its crystal structure is reported herein.

Compound (I, Fig. 1), features intramolecular O—H···N and N—H···N hydrogen bonds to form six- and five-membered rings, producing S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995). The two phenyl substituents on the quinoxaline unit are inclined at an angle of 61.14 (9)° to one another. They also form dihedral angles of 43.38 (9) and 39.50 (9)°, respectively, with the ten–membered quinoxaline ring. In the crystal packing (Table 1 & Fig. 2), molecules are stacked when viewed down the b axis, being consolidated by ππ interactions with Cg2···Cg3 distances ranging from 3.6294 (11) – 3.6881 (11) Å; symmetry codes 1 - x, -1/2 + y, 3/2 - z and 1 - x, 1/2 + y, 3/2 - z, and Cg2 and Cg3 are the centroids of the C1–C6 and C8/C9/C10/C11/C14/C15 phenyl rings, respectively. The crystal structure is also stabilized by intramolecular O—H···N and N—H···N contacts.

Related literature top

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Corden et al. (1996); Fun et al. (2008); Govindasamy et al. (1999). For applications and bioactivities, see: Anderson et al. (1997); Cohen & Schmidt (1964); Granovski et al. (1993); Li & Chang (1991); Shahrokhian et al. (2000); Unaleroglu & Hokelek (2002).

Experimental top

The synthetic method used for the preparation of (I) has been described earlier (Fun et al., 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of a mixed dichloromethane-ethanol (3/1) solution of (I), held at room temperature.

Refinement top

The H-atoms attached to O1 and N4 were located in a difference Fourier map and refined freely; see Table 1 for bond distances. The remaining H atoms were included in the riding model approximation with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and atomic numbering. Intramolecular interactions are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing in (I), viewed down the b-axis showing stacking arrangement. Intramolecular and intermolecular interactions are shown as dashed lines.
2-[(E)-(5-Amino-2,3-diphenylquinoxalin-6-yl)iminomethyl]-4-chlorophenol top
Crystal data top
C27H19ClN4OF(000) = 936
Mr = 450.91Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2969 reflections
a = 22.8728 (11) Åθ = 2.9–28.1°
b = 7.3068 (4) ŵ = 0.21 mm1
c = 12.5632 (6) ÅT = 100 K
β = 92.037 (2)°Block, yellow
V = 2098.32 (18) Å30.55 × 0.09 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6180 independent reflections
Radiation source: fine-focus sealed tube4118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 30.1°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3231
Tmin = 0.843, Tmax = 0.985k = 1010
25593 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0879P)2]
where P = (Fo2 + 2Fc2)/3
6180 reflections(Δ/σ)max = 0.001
310 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C27H19ClN4OV = 2098.32 (18) Å3
Mr = 450.91Z = 4
Monoclinic, P21/cMo Kα radiation
a = 22.8728 (11) ŵ = 0.21 mm1
b = 7.3068 (4) ÅT = 100 K
c = 12.5632 (6) Å0.55 × 0.09 × 0.07 mm
β = 92.037 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6180 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4118 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 0.985Rint = 0.062
25593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.40 e Å3
6180 reflectionsΔρmin = 0.41 e Å3
310 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.26328 (2)0.46708 (7)0.59559 (4)0.02813 (14)
O10.44768 (6)0.2687 (2)0.91204 (10)0.0252 (3)
N10.52358 (6)0.3641 (2)0.77495 (12)0.0200 (3)
N20.72297 (7)0.4713 (2)0.88154 (11)0.0174 (3)
N30.75971 (6)0.3333 (2)0.68619 (11)0.0185 (3)
N40.60625 (8)0.4640 (2)0.92698 (13)0.0263 (4)
C10.40599 (8)0.3116 (3)0.83649 (14)0.0203 (4)
C20.34744 (8)0.2879 (3)0.85952 (15)0.0236 (4)
H2A0.33750.24020.92510.028*
C30.30418 (8)0.3350 (3)0.78542 (15)0.0233 (4)
H3A0.26510.31990.80130.028*
C40.31874 (8)0.4049 (3)0.68704 (15)0.0214 (4)
C50.37624 (8)0.4249 (3)0.66116 (14)0.0211 (4)
H5A0.38550.47000.59460.025*
C60.42106 (8)0.3773 (2)0.73536 (14)0.0197 (4)
C70.48149 (8)0.3948 (3)0.70633 (14)0.0206 (4)
H7A0.49010.42870.63730.025*
C80.58278 (7)0.3677 (2)0.74723 (14)0.0183 (3)
C90.60160 (8)0.3128 (3)0.64598 (14)0.0206 (4)
H9A0.57390.28130.59320.025*
C100.65962 (8)0.3050 (3)0.62430 (14)0.0205 (4)
H10A0.67130.26840.55740.025*
C110.70168 (7)0.3530 (2)0.70445 (13)0.0179 (3)
C120.79775 (7)0.3790 (2)0.76358 (13)0.0175 (3)
C130.77919 (7)0.4620 (2)0.86047 (13)0.0169 (3)
C140.68362 (7)0.4111 (2)0.80547 (13)0.0169 (3)
C150.62300 (8)0.4161 (2)0.82744 (13)0.0173 (3)
C160.85933 (7)0.3244 (2)0.74618 (13)0.0186 (4)
C170.88232 (8)0.3426 (3)0.64549 (14)0.0211 (4)
H17A0.86030.39930.59130.025*
C180.93766 (8)0.2771 (3)0.62536 (14)0.0232 (4)
H18A0.95290.29250.55830.028*
C190.97043 (8)0.1884 (3)0.70519 (15)0.0241 (4)
H19A1.00720.14190.69120.029*
C200.94797 (8)0.1695 (3)0.80613 (14)0.0221 (4)
H20A0.96980.11120.86000.027*
C210.89277 (8)0.2380 (3)0.82614 (13)0.0217 (4)
H21A0.87800.22600.89380.026*
C220.82037 (8)0.5458 (2)0.93956 (13)0.0181 (4)
C230.86747 (8)0.6521 (3)0.90850 (14)0.0218 (4)
H23A0.87430.66750.83650.026*
C240.90422 (8)0.7350 (3)0.98433 (15)0.0250 (4)
H24A0.93500.80810.96300.030*
C250.89514 (8)0.7091 (3)1.09180 (15)0.0244 (4)
H25A0.92050.76171.14260.029*
C260.84845 (8)0.6051 (3)1.12332 (14)0.0227 (4)
H26A0.84220.58871.19540.027*
C270.81078 (8)0.5246 (2)1.04769 (13)0.0194 (4)
H27A0.77900.45631.06940.023*
H1O10.4828 (12)0.299 (4)0.881 (2)0.062 (9)*
H1N40.5681 (12)0.531 (4)0.9337 (19)0.052 (8)*
H2N40.6396 (13)0.516 (4)0.976 (2)0.060 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0190 (2)0.0284 (3)0.0367 (3)0.0003 (2)0.00334 (18)0.0011 (2)
O10.0226 (7)0.0291 (8)0.0241 (6)0.0010 (6)0.0023 (5)0.0007 (6)
N10.0176 (7)0.0168 (7)0.0256 (8)0.0017 (6)0.0014 (6)0.0025 (6)
N20.0188 (7)0.0151 (7)0.0184 (7)0.0010 (6)0.0009 (5)0.0010 (6)
N30.0183 (7)0.0180 (7)0.0194 (7)0.0015 (6)0.0001 (5)0.0003 (6)
N40.0242 (8)0.0304 (9)0.0242 (8)0.0028 (8)0.0009 (6)0.0002 (7)
C10.0223 (9)0.0162 (8)0.0223 (8)0.0010 (7)0.0013 (7)0.0036 (7)
C20.0245 (9)0.0206 (9)0.0262 (9)0.0020 (8)0.0060 (7)0.0033 (7)
C30.0182 (8)0.0210 (9)0.0308 (9)0.0009 (8)0.0039 (7)0.0060 (8)
C40.0178 (8)0.0161 (8)0.0302 (9)0.0003 (7)0.0017 (7)0.0042 (7)
C50.0212 (9)0.0173 (9)0.0251 (9)0.0020 (8)0.0022 (7)0.0012 (7)
C60.0191 (8)0.0158 (8)0.0244 (9)0.0004 (7)0.0017 (7)0.0026 (7)
C70.0212 (9)0.0174 (9)0.0234 (8)0.0006 (8)0.0027 (7)0.0012 (7)
C80.0170 (8)0.0142 (8)0.0237 (8)0.0002 (7)0.0021 (6)0.0005 (7)
C90.0196 (8)0.0191 (9)0.0230 (8)0.0005 (7)0.0012 (7)0.0031 (7)
C100.0225 (9)0.0197 (9)0.0193 (8)0.0021 (8)0.0002 (7)0.0018 (7)
C110.0178 (8)0.0164 (8)0.0194 (8)0.0004 (7)0.0007 (6)0.0009 (7)
C120.0181 (8)0.0164 (8)0.0179 (8)0.0002 (7)0.0022 (6)0.0024 (6)
C130.0168 (8)0.0161 (8)0.0179 (8)0.0007 (7)0.0011 (6)0.0019 (6)
C140.0176 (8)0.0142 (8)0.0190 (8)0.0011 (7)0.0014 (6)0.0012 (6)
C150.0185 (8)0.0135 (8)0.0199 (8)0.0017 (7)0.0024 (6)0.0016 (7)
C160.0164 (8)0.0178 (8)0.0218 (8)0.0005 (7)0.0009 (6)0.0016 (7)
C170.0198 (8)0.0230 (9)0.0206 (8)0.0022 (8)0.0006 (7)0.0013 (7)
C180.0200 (9)0.0296 (10)0.0202 (8)0.0031 (8)0.0032 (7)0.0018 (7)
C190.0154 (8)0.0278 (10)0.0292 (9)0.0005 (8)0.0034 (7)0.0014 (8)
C200.0178 (8)0.0251 (10)0.0234 (9)0.0030 (8)0.0014 (7)0.0012 (8)
C210.0212 (9)0.0260 (10)0.0182 (8)0.0013 (8)0.0030 (7)0.0001 (7)
C220.0171 (8)0.0165 (8)0.0204 (8)0.0032 (7)0.0008 (6)0.0015 (7)
C230.0205 (8)0.0220 (9)0.0231 (8)0.0011 (8)0.0032 (7)0.0005 (7)
C240.0200 (9)0.0237 (10)0.0314 (10)0.0031 (8)0.0035 (7)0.0025 (8)
C250.0198 (9)0.0250 (10)0.0280 (9)0.0008 (8)0.0040 (7)0.0052 (8)
C260.0254 (9)0.0224 (9)0.0202 (8)0.0025 (8)0.0003 (7)0.0006 (7)
C270.0170 (8)0.0202 (9)0.0210 (8)0.0001 (7)0.0023 (6)0.0011 (7)
Geometric parameters (Å, º) top
Cl1—C41.7414 (19)C10—H10A0.9300
O1—C11.358 (2)C11—C141.414 (2)
O1—H1O10.93 (3)C12—C131.437 (2)
N1—C71.289 (2)C12—C161.488 (2)
N1—C81.410 (2)C13—C221.478 (2)
N2—C131.324 (2)C14—C151.424 (2)
N2—C141.362 (2)C16—C211.392 (2)
N3—C121.324 (2)C16—C171.393 (2)
N3—C111.363 (2)C17—C181.385 (2)
N4—C151.366 (2)C17—H17A0.9300
N4—H1N41.01 (3)C18—C191.391 (3)
N4—H2N41.03 (3)C18—H18A0.9300
C1—C21.391 (3)C19—C201.392 (3)
C1—C61.412 (2)C19—H19A0.9300
C2—C31.378 (3)C20—C211.389 (2)
C2—H2A0.9300C20—H20A0.9300
C3—C41.389 (3)C21—H21A0.9300
C3—H3A0.9300C22—C271.392 (2)
C4—C51.374 (2)C22—C231.395 (2)
C5—C61.405 (2)C23—C241.387 (3)
C5—H5A0.9300C23—H23A0.9300
C6—C71.448 (2)C24—C251.386 (3)
C7—H7A0.9300C24—H24A0.9300
C8—C151.386 (2)C25—C261.380 (3)
C8—C91.415 (2)C25—H25A0.9300
C9—C101.365 (2)C26—C271.390 (2)
C9—H9A0.9300C26—H26A0.9300
C10—C111.412 (2)C27—H27A0.9300
C1—O1—H1O1104.0 (16)N2—C13—C22116.42 (15)
C7—N1—C8122.17 (15)C12—C13—C22122.95 (15)
C13—N2—C14117.74 (14)N2—C14—C11121.32 (15)
C12—N3—C11117.91 (15)N2—C14—C15118.65 (15)
C15—N4—H1N4118.3 (14)C11—C14—C15119.96 (16)
C15—N4—H2N4114.3 (16)N4—C15—C8122.02 (16)
H1N4—N4—H2N4113 (2)N4—C15—C14119.38 (16)
O1—C1—C2118.90 (16)C8—C15—C14118.58 (15)
O1—C1—C6121.29 (16)C21—C16—C17118.89 (16)
C2—C1—C6119.81 (17)C21—C16—C12120.97 (15)
C3—C2—C1120.12 (17)C17—C16—C12119.83 (15)
C3—C2—H2A119.9C18—C17—C16120.63 (17)
C1—C2—H2A119.9C18—C17—H17A119.7
C2—C3—C4120.27 (17)C16—C17—H17A119.7
C2—C3—H3A119.9C17—C18—C19120.12 (16)
C4—C3—H3A119.9C17—C18—H18A119.9
C5—C4—C3120.78 (17)C19—C18—H18A119.9
C5—C4—Cl1119.81 (14)C18—C19—C20119.77 (17)
C3—C4—Cl1119.40 (14)C18—C19—H19A120.1
C4—C5—C6119.91 (17)C20—C19—H19A120.1
C4—C5—H5A120.0C21—C20—C19119.75 (17)
C6—C5—H5A120.0C21—C20—H20A120.1
C5—C6—C1119.04 (16)C19—C20—H20A120.1
C5—C6—C7119.45 (16)C20—C21—C16120.81 (16)
C1—C6—C7121.51 (16)C20—C21—H21A119.6
N1—C7—C6120.88 (16)C16—C21—H21A119.6
N1—C7—H7A119.6C27—C22—C23119.01 (16)
C6—C7—H7A119.6C27—C22—C13119.40 (16)
C15—C8—N1116.33 (15)C23—C22—C13121.53 (15)
C15—C8—C9120.70 (16)C24—C23—C22120.41 (16)
N1—C8—C9122.82 (15)C24—C23—H23A119.8
C10—C9—C8121.32 (16)C22—C23—H23A119.8
C10—C9—H9A119.3C25—C24—C23120.07 (18)
C8—C9—H9A119.3C25—C24—H24A120.0
C9—C10—C11119.34 (16)C23—C24—H24A120.0
C9—C10—H10A120.3C26—C25—C24119.92 (17)
C11—C10—H10A120.3C26—C25—H25A120.0
N3—C11—C10119.78 (15)C24—C25—H25A120.0
N3—C11—C14120.02 (15)C25—C26—C27120.26 (16)
C10—C11—C14120.09 (16)C25—C26—H26A119.9
N3—C12—C13121.47 (15)C27—C26—H26A119.9
N3—C12—C16115.16 (15)C26—C27—C22120.28 (17)
C13—C12—C16123.18 (15)C26—C27—H27A119.9
N2—C13—C12120.61 (15)C22—C27—H27A119.9
O1—C1—C2—C3178.24 (16)C10—C11—C14—N2175.02 (16)
C6—C1—C2—C32.5 (3)N3—C11—C14—C15174.42 (16)
C1—C2—C3—C40.5 (3)C10—C11—C14—C151.8 (3)
C2—C3—C4—C51.3 (3)N1—C8—C15—N42.2 (3)
C2—C3—C4—Cl1178.91 (14)C9—C8—C15—N4177.84 (17)
C3—C4—C5—C61.1 (3)N1—C8—C15—C14176.25 (16)
Cl1—C4—C5—C6179.12 (14)C9—C8—C15—C140.6 (3)
C4—C5—C6—C10.9 (3)N2—C14—C15—N46.2 (3)
C4—C5—C6—C7178.53 (17)C11—C14—C15—N4176.85 (17)
O1—C1—C6—C5178.08 (16)N2—C14—C15—C8175.28 (16)
C2—C1—C6—C52.7 (3)C11—C14—C15—C81.6 (3)
O1—C1—C6—C72.5 (3)N3—C12—C16—C21132.71 (18)
C2—C1—C6—C7176.75 (17)C13—C12—C16—C2142.4 (3)
C8—N1—C7—C6175.52 (16)N3—C12—C16—C1740.8 (2)
C5—C6—C7—N1175.24 (17)C13—C12—C16—C17144.14 (18)
C1—C6—C7—N15.3 (3)C21—C16—C17—C180.4 (3)
C7—N1—C8—C15151.46 (17)C12—C16—C17—C18174.06 (17)
C7—N1—C8—C933.0 (3)C16—C17—C18—C191.4 (3)
C15—C8—C9—C100.3 (3)C17—C18—C19—C201.5 (3)
N1—C8—C9—C10175.08 (17)C18—C19—C20—C210.5 (3)
C8—C9—C10—C110.1 (3)C19—C20—C21—C160.5 (3)
C12—N3—C11—C10179.68 (16)C17—C16—C21—C200.6 (3)
C12—N3—C11—C143.4 (3)C12—C16—C21—C20173.01 (17)
C9—C10—C11—N3175.32 (17)N2—C13—C22—C2740.2 (2)
C9—C10—C11—C140.9 (3)C12—C13—C22—C27141.69 (18)
C11—N3—C12—C135.4 (3)N2—C13—C22—C23137.21 (17)
C11—N3—C12—C16169.78 (15)C12—C13—C22—C2340.9 (3)
C14—N2—C13—C124.3 (2)C27—C22—C23—C240.1 (3)
C14—N2—C13—C22173.81 (15)C13—C22—C23—C24177.55 (17)
N3—C12—C13—N29.7 (3)C22—C23—C24—C251.5 (3)
C16—C12—C13—N2165.05 (17)C23—C24—C25—C261.9 (3)
N3—C12—C13—C22168.31 (16)C24—C25—C26—C270.7 (3)
C16—C12—C13—C2216.9 (3)C25—C26—C27—C221.0 (3)
C13—N2—C14—C114.5 (3)C23—C22—C27—C261.4 (3)
C13—N2—C14—C15178.63 (16)C13—C22—C27—C26178.89 (17)
N3—C11—C14—N28.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.93 (3)1.72 (3)2.584 (2)153 (2)
N4—H1N4···O1i1.01 (3)2.47 (3)3.099 (2)120.4 (18)
N4—H2N4···N21.04 (3)2.31 (3)2.750 (2)104.3 (17)
C27—H27A···N3ii0.932.623.373 (2)138
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC27H19ClN4O
Mr450.91
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)22.8728 (11), 7.3068 (4), 12.5632 (6)
β (°) 92.037 (2)
V3)2098.32 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.55 × 0.09 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.843, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
25593, 6180, 4118
Rint0.062
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.159, 1.01
No. of reflections6180
No. of parameters310
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.41

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.93 (3)1.72 (3)2.584 (2)153 (2)
N4—H1N4···O1i1.01 (3)2.47 (3)3.099 (2)120.4 (18)
N4—H2N4···N21.04 (3)2.31 (3)2.750 (2)104.3 (17)
C27—H27A···N3ii0.932.623.373 (2)138
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z+1/2.
 

Footnotes

Address of first Postdoctoral position: Chemistry Department, University of Bath, Claverton Down, Bath BA2 7AY, England.

§Additional correspondence author, e-mail: p.r.raithby@bath.ac.uk.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks the Universiti Sains Malaysia and the University of Bath for post-doctoral research fellowships.

References

First citationAnderson, O. P., Cour, A. L., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. & Toftland, H. L. (1997). J. Chem. Soc. Dalton Trans. pp. 111–120.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen, M. D. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2041–2051.  CrossRef Web of Science Google Scholar
First citationCorden, J. P., Bishop, P. R., Errington, W. & Wallbridge, M. G. H. (1996). Acta Cryst. C52, 2777–2779.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R. & Raithby, P. R. (2008). Acta Cryst. E64, o1271–o1272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGovindasamy, L., Velmurugan, D. & Rajendran, T. M. (1999). Acta Cryst. C55, 1368–1369.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationLi, C. H. & Chang, T. C. (1991). Eur. Polym. J. 27, 35–39.  CrossRef CAS Web of Science Google Scholar
First citationShahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem. 72, 956–962.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUnaleroglu, C. & Hökelek, T. (2002). Spectrosc. Lett. 32, 317–326.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages o1411-o1412
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds