organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4-Bromo­phen­yl)-3-(2-chloro­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 3 July 2008; accepted 4 July 2008; online 12 July 2008)

The structure of the title compound, C15H10BrClO, comprises two substituted benzene rings bridged by a prop-2-en-1-one group and exists in an E configuration about the C=N double bond. The dihedral angle formed between the 4-bromo­phenyl and 2-chloro­phenyl rings is 23.77 (18)°. In the crystal structure, the mol­ecules are linked by weak C—H⋯O inter­actions, forming a supra­molecular zigzag chain. Intramolecular C—H⋯Cl and C—H⋯O hydrogen bonds are also present.

Related literature

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Patil et al. (2007[Patil, P. S., Chantrapromma, S., Fun, H.-K., Dharmaprakash, S. M. & Babu, H. B. R. (2007). Acta Cryst. E63, o2612.]); Moorthi et al. (2005[Moorthi, S. S., Chinnakali, K., Nanjundan, S., Unnithan, C. S., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o483-o485.]). For applications of chalcones, see: Gu et al. (2008[Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 091118.]); Mishra et al. (2008[Mishra, N., Arora, P., Kumar, B., Mishra, L. C., Bhattacharya, A., Awasthi, S. K. & Bhasin, V. K. (2008). Eur. J. Med. Chem. 43, 1530-1535.]); Nel et al. (1998[Nel, R. J. J., Van Heerden, P. S., Van Rensburg, H. & Ferreira, D. (1998). Tetrahedron Lett. 39, 5623-5626.]); Patil & Dharmaprakash (2008[Patil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451-453.]); Wang et al. (2004[Wang, L., Zhang, Y., Lu, C.-R. & Zhang, D.-C. (2004). Acta Cryst. C60, o696-o698.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10BrClO

  • Mr = 321.59

  • Orthorhombic, P n a 21

  • a = 27.8720 (6) Å

  • b = 3.9235 (1) Å

  • c = 11.6408 (2) Å

  • V = 1272.99 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.42 mm−1

  • T = 100.0 (1) K

  • 0.33 × 0.18 × 0.09 mm

Data collection
  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.392, Tmax = 0.736

  • 9658 measured reflections

  • 3495 independent reflections

  • 2938 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.086

  • S = 1.03

  • 3495 reflections

  • 163 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1545 Friedel pairs

  • Flack parameter: 0.011 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.93 2.53 3.191 (4) 128
C9—H9A⋯Cl1 0.93 2.61 3.064 (4) 111
C9—H9A⋯O1 0.93 2.41 2.765 (5) 102
Symmetry code: (i) [-x, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Chalcone and its derivatives have a wide range of applications ranging from bioactivities (Mishra et al., 2008; Nel et al., 1998) to materials with non-linear optical (NLO) properties (Gu et al., 2008 & Moorthi et al., 2005). As part of our continuing interest in the latter application (Patil & Dharmaprakash, 2008), the synthesis and structure of the title compound (I, Fig. 1) is described herein.The non-centrosymmetric crystal of the title compound should exhibit 2nd-order NLO properties.

The structure of (I) comprises two six-membered rings bridged by a pro-2-en-1-one moiety. The molecule exists in the E conformation with respect to the C8=C9 double bond [1.328 (5) Å]. The molecule is not planar as seen in the dihedral angle of 23.77 (18)° formed between the 4-bromophenyl and 2-chlorophenyl rings. Further, the mean plane through the O1, C6, C7 & C8 atoms forms angles, respectively, of 13.2 (2)° and 11.0 (2)° with the planes of 4-bromophenyl and 2-chlorophenyl rings. Weak C9–H9A···O1 and C9—H9A···Cl1 intramolecular interactions (Fig. 1 & Table 1) generate S(5) ring motifs (Bernstein et al., 1995). The derived bond distances and angles are comparable with those determined in the closely related structures (e.g. Patil et al., 2007 & Sathiya Moorthi et al., 2005).

In the crystal packing (Fig. 2), the molecules are linked into a supramolecular chain via C-H···O interactions aligned along the c-direction, Table 1.

Related literature top

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Patil et al. (2007); Moorthi et al. (2005). For applications of chalcones, see: Gu et al. (2008); Mishra et al. (2008); Nel et al. (1998); Patil & Dharmaprakash (2008); Wang et al. (2004).

Experimental top

Compound (I) was synthesized by the condensation of 2-chlorobenzaldehyde (0.01 mol, 1.49 g) with 4-bromoacetophenone (0.01 mol, 1.99 g) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 20%). After stirring for 2 h, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 h. The resulting crude solid was filtered and dried. Single crystals were obtained by recrystallization from an acetone solution of (I).

Refinement top

All H atoms were in the riding model approximation with C—H = 0.93 Å, and with Uiso = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed lines represent intramolecular C—H···O and C—H···Cl interactions.
[Figure 2] Fig. 2. A view down the b-axis of the crystal packing in (I), highlighting a supramolecular molecular chain aligned along the c axis. The C-H···O interactions are shown as dashed lines.
(E)-1-(4-Bromophenyl)-3-(2-chlorophenyl)prop-2-en-1-one top
Crystal data top
C15H10BrClOF(000) = 640
Mr = 321.59Dx = 1.678 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3495 reflections
a = 27.8720 (6) Åθ = 1.5–30.0°
b = 3.9235 (1) ŵ = 3.42 mm1
c = 11.6408 (2) ÅT = 100 K
V = 1272.99 (5) Å3Block, colorless
Z = 40.33 × 0.18 × 0.09 mm
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
3495 independent reflections
Radiation source: fine-focus sealed tube2938 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 1.5°
ω scansh = 3639
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 53
Tmin = 0.392, Tmax = 0.736l = 1616
9658 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + 1.3265P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3495 reflectionsΔρmax = 0.41 e Å3
163 parametersΔρmin = 0.44 e Å3
1 restraintAbsolute structure: Flack (1983), 1545 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (12)
Crystal data top
C15H10BrClOV = 1272.99 (5) Å3
Mr = 321.59Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 27.8720 (6) ŵ = 3.42 mm1
b = 3.9235 (1) ÅT = 100 K
c = 11.6408 (2) Å0.33 × 0.18 × 0.09 mm
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
3495 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2938 reflections with I > 2σ(I)
Tmin = 0.392, Tmax = 0.736Rint = 0.044
9658 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.41 e Å3
S = 1.03Δρmin = 0.44 e Å3
3495 reflectionsAbsolute structure: Flack (1983), 1545 Friedel pairs
163 parametersAbsolute structure parameter: 0.011 (12)
1 restraint
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.165695 (11)0.71499 (8)0.27469 (5)0.02346 (10)
Cl10.18444 (4)0.5643 (3)0.47411 (9)0.0264 (2)
O10.03953 (10)0.0955 (8)0.5096 (2)0.0254 (6)
C10.03194 (13)0.2560 (9)0.2561 (3)0.0187 (8)
H1A0.01320.15020.20040.022*
C20.07645 (13)0.3879 (11)0.2266 (3)0.0192 (8)
H2A0.08780.37200.15170.023*
C30.10349 (14)0.5426 (9)0.3106 (3)0.0192 (8)
C40.08725 (13)0.5741 (10)0.4230 (3)0.0202 (8)
H4A0.10590.68310.47820.024*
C50.04319 (13)0.4411 (9)0.4510 (3)0.0177 (8)
H5A0.03210.45850.52610.021*
C60.01502 (13)0.2810 (9)0.3686 (3)0.0156 (7)
C70.03108 (13)0.1245 (10)0.4073 (3)0.0180 (8)
C80.06613 (13)0.0089 (10)0.3202 (3)0.0185 (8)
H8A0.06100.05430.24280.022*
C90.10501 (14)0.1603 (10)0.3534 (3)0.0192 (8)
H9A0.10740.20790.43150.023*
C100.14477 (11)0.2809 (8)0.2809 (5)0.0180 (6)
C110.18352 (14)0.4627 (10)0.3288 (3)0.0206 (8)
C120.22195 (13)0.5699 (9)0.2625 (4)0.0246 (8)
H12A0.24700.69070.29600.030*
C130.22293 (15)0.4970 (11)0.1464 (4)0.0276 (9)
H13A0.24880.56620.10170.033*
C140.18509 (15)0.3199 (11)0.0968 (3)0.0239 (8)
H14A0.18560.27190.01850.029*
C150.14652 (15)0.2140 (10)0.1632 (3)0.0213 (8)
H15A0.12140.09630.12870.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01631 (16)0.02108 (18)0.03298 (17)0.00286 (13)0.0010 (2)0.0002 (3)
Cl10.0257 (5)0.0253 (5)0.0282 (4)0.0021 (4)0.0095 (4)0.0033 (4)
O10.0260 (16)0.0329 (18)0.0171 (13)0.0047 (13)0.0038 (11)0.0008 (11)
C10.0159 (16)0.0214 (19)0.019 (2)0.0002 (13)0.0025 (13)0.0006 (14)
C20.0177 (19)0.021 (2)0.0187 (16)0.0023 (15)0.0003 (14)0.0018 (15)
C30.0170 (18)0.0126 (19)0.0278 (19)0.0004 (14)0.0001 (14)0.0023 (14)
C40.0186 (19)0.017 (2)0.0248 (19)0.0025 (15)0.0068 (15)0.0046 (15)
C50.0180 (18)0.017 (2)0.0180 (17)0.0023 (14)0.0011 (13)0.0021 (14)
C60.0138 (17)0.0161 (19)0.0169 (16)0.0025 (14)0.0010 (13)0.0003 (13)
C70.0176 (18)0.015 (2)0.0218 (17)0.0042 (14)0.0011 (14)0.0011 (14)
C80.0153 (18)0.022 (2)0.0178 (16)0.0010 (15)0.0015 (14)0.0020 (14)
C90.018 (2)0.020 (2)0.0195 (16)0.0021 (15)0.0003 (14)0.0000 (14)
C100.0150 (14)0.0143 (15)0.0248 (15)0.0030 (12)0.001 (2)0.0027 (19)
C110.0184 (19)0.015 (2)0.0280 (19)0.0060 (15)0.0042 (15)0.0010 (15)
C120.0177 (17)0.0158 (18)0.040 (2)0.0019 (13)0.0016 (18)0.004 (2)
C130.020 (2)0.022 (2)0.041 (2)0.0077 (17)0.0090 (18)0.0105 (18)
C140.025 (2)0.025 (2)0.0220 (19)0.0065 (17)0.0067 (16)0.0013 (16)
C150.021 (2)0.017 (2)0.0257 (19)0.0003 (15)0.0010 (15)0.0019 (15)
Geometric parameters (Å, º) top
Br1—C31.907 (4)C8—C91.328 (5)
Cl1—C111.738 (4)C8—H8A0.9300
O1—C71.219 (4)C9—C101.472 (6)
C1—C21.387 (5)C9—H9A0.9300
C1—C61.396 (5)C10—C151.395 (7)
C1—H1A0.9300C10—C111.409 (5)
C2—C31.376 (5)C11—C121.386 (6)
C2—H2A0.9300C12—C131.381 (7)
C3—C41.390 (5)C12—H12A0.9300
C4—C51.373 (5)C13—C141.389 (6)
C4—H4A0.9300C13—H13A0.9300
C5—C61.389 (5)C14—C151.388 (6)
C5—H5A0.9300C14—H14A0.9300
C6—C71.493 (5)C15—H15A0.9300
C7—C81.479 (5)
C2—C1—C6120.5 (3)C7—C8—H8A120.2
C2—C1—H1A119.7C8—C9—C10127.4 (4)
C6—C1—H1A119.7C8—C9—H9A116.3
C3—C2—C1118.6 (3)C10—C9—H9A116.3
C3—C2—H2A120.7C15—C10—C11117.2 (4)
C1—C2—H2A120.7C15—C10—C9122.0 (3)
C2—C3—C4122.0 (4)C11—C10—C9120.8 (5)
C2—C3—Br1119.9 (3)C12—C11—C10121.7 (4)
C4—C3—Br1118.1 (3)C12—C11—Cl1117.5 (3)
C5—C4—C3118.7 (3)C10—C11—Cl1120.8 (3)
C5—C4—H4A120.6C13—C12—C11119.8 (4)
C3—C4—H4A120.6C13—C12—H12A120.1
C4—C5—C6120.9 (3)C11—C12—H12A120.1
C4—C5—H5A119.6C12—C13—C14119.7 (4)
C6—C5—H5A119.6C12—C13—H13A120.1
C5—C6—C1119.2 (3)C14—C13—H13A120.1
C5—C6—C7117.7 (3)C15—C14—C13120.4 (4)
C1—C6—C7123.0 (3)C15—C14—H14A119.8
O1—C7—C8120.9 (4)C13—C14—H14A119.8
O1—C7—C6119.9 (3)C14—C15—C10121.2 (4)
C8—C7—C6119.2 (3)C14—C15—H15A119.4
C9—C8—C7119.5 (3)C10—C15—H15A119.4
C9—C8—H8A120.2
C6—C1—C2—C30.1 (6)C6—C7—C8—C9173.5 (4)
C1—C2—C3—C40.9 (6)C7—C8—C9—C10176.9 (3)
C1—C2—C3—Br1178.1 (3)C8—C9—C10—C152.7 (6)
C2—C3—C4—C51.1 (6)C8—C9—C10—C11179.0 (4)
Br1—C3—C4—C5177.9 (3)C15—C10—C11—C120.3 (5)
C3—C4—C5—C60.7 (6)C9—C10—C11—C12178.1 (3)
C4—C5—C6—C10.0 (6)C15—C10—C11—Cl1179.1 (3)
C4—C5—C6—C7176.4 (3)C9—C10—C11—Cl12.5 (5)
C2—C1—C6—C50.3 (6)C10—C11—C12—C130.4 (6)
C2—C1—C6—C7175.9 (4)Cl1—C11—C12—C13179.8 (3)
C5—C6—C7—O110.8 (5)C11—C12—C13—C140.7 (6)
C1—C6—C7—O1165.5 (4)C12—C13—C14—C150.4 (6)
C5—C6—C7—C8168.8 (3)C13—C14—C15—C100.2 (6)
C1—C6—C7—C815.0 (5)C11—C10—C15—C140.6 (5)
O1—C7—C8—C97.0 (6)C9—C10—C15—C14177.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.932.533.191 (4)128
C9—H9A···Cl10.932.613.064 (4)111
C9—H9A···O10.932.412.765 (5)102
Symmetry code: (i) x, y, z1/2.

Experimental details

Crystal data
Chemical formulaC15H10BrClO
Mr321.59
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)27.8720 (6), 3.9235 (1), 11.6408 (2)
V3)1272.99 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.42
Crystal size (mm)0.33 × 0.18 × 0.09
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.392, 0.736
No. of measured, independent and
observed [I > 2σ(I)] reflections
9658, 3495, 2938
Rint0.044
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.03
No. of reflections3495
No. of parameters163
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.44
Absolute structureFlack (1983), 1545 Friedel pairs
Absolute structure parameter0.011 (12)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.932.533.191 (4)128
C9—H9A···Cl10.932.613.064 (4)111
C9—H9A···O10.932.412.765 (5)102
Symmetry code: (i) x, y, z1/2.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

This work is supported by the Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. SC thanks Prince of Songkla University for generous support. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 091118.  Google Scholar
First citationMishra, N., Arora, P., Kumar, B., Mishra, L. C., Bhattacharya, A., Awasthi, S. K. & Bhasin, V. K. (2008). Eur. J. Med. Chem. 43, 1530–1535.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoorthi, S. S., Chinnakali, K., Nanjundan, S., Unnithan, C. S., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o483–o485.  CSD CrossRef IUCr Journals Google Scholar
First citationNel, R. J. J., Van Heerden, P. S., Van Rensburg, H. & Ferreira, D. (1998). Tetrahedron Lett. 39, 5623–5626.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Chantrapromma, S., Fun, H.-K., Dharmaprakash, S. M. & Babu, H. B. R. (2007). Acta Cryst. E63, o2612.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S. & Dharmaprakash, S. M. (2008). Mater. Lett. 62, 451–453.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Zhang, Y., Lu, C.-R. & Zhang, D.-C. (2004). Acta Cryst. C60, o696–o698.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds