organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-N-(4-methyl­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 7 July 2008; accepted 8 July 2008; online 16 July 2008)

The conformations of the N—H and C=O bonds in the structure of the title compound, C15H15NO, are trans to each other. Furthermore, the position of the amide O atom is syn to the ortho-methyl group in the benzoyl ring. The central amide group is tilted at an angle of 59.96 (11)° to the benzoyl ring, and the benzoyl and aniline rings form a dihedral angle of 81.44 (5)°. N—H⋯O hydrogen bonds link the mol­ecules into infinite chains running along the c axis.

Related literature

For related literature, see Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.], 2008a[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383.],b[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o541.],c[Gowda, B. T., Tokarčík, M., Kožíšek, J. & Sowmya, B. P. (2008c). Acta Cryst. E64, o83.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO

  • Mr = 225.28

  • Monoclinic, C 2/c

  • a = 40.6634 (12) Å

  • b = 7.1770 (2) Å

  • c = 8.9418 (2) Å

  • β = 96.173 (3)°

  • V = 2594.45 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 (2) K

  • 0.33 × 0.13 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur System diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.985, Tmax = 0.994

  • 25372 measured reflections

  • 2486 independent reflections

  • 1594 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.121

  • S = 1.02

  • 2486 reflections

  • 159 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.868 (13) 1.973 (13) 2.8361 (15) 172.9 (15)
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of a study of exploring the effect of substituents on the structures of benzanilides (Gowda et al., 2003; 2008a,b,c), inthe present work, the structure of 2-methyl-N-(4-methylphenyl)benzamide (I) has been determined. The N—H and C=O bonds in the amide group of (I) are trans to each other (Fig. 1), similar to what is observed in N-(4-methylphenyl)benzamide (N4MPBA) (Gowda et al., 2008c), 2-methyl-N-(phenyl)-benzamide (NP2MBA) (Gowda et al., 2008a), and 2-methyl-N-(3-methylphenyl)-benzamide (N3MP2MBA) (Gowda et al., 2008b). Further, the conformation of the amide oxygen in (I) is syn to the ortho-methyl group in the benzoyl ring, similar to what is observed in NP2MBA and N3MP2MBA (Gowda et al., 2008a, b).

The central amide group is tilted to the benzoyl ring at the angle of 59.96 (11)°. The two rings (benzoyl and aniline) make a dihedral angle of 81.44 (5)°. N—H···O hydrogen bonds link the molecules into infinite chains running along the c-axis of the crystal (Table 1 & Fig. 2).

Related literature top

For related literature, see Gowda et al. (2003, 2008a,b,c).

Experimental top

The title compound was prepared according to the method described by Gowda et al. (2003). Prism-like colourless single crystals were obtained by slow evaporation from an ethanol solution of (I) (0.5 g in about 40 ml of ethanol) at room temperature.

Refinement top

All C-bound H atoms were placed in calculated positions and constrained to ride on their parent atoms with C–H = 0.93- 0.96 Å. The H atoms of C15-methyl group were finally refined as orientationally disordered using the AFIX 127 command in SHELXL-97 (Sheldrick, 2008). The amide-H atom was refined with the N–H distance restrained to 0.86 (2) Å. The Uiso(H) values were set at 1.2Ueq(C,N) and 1.5Ueq (C-methyl). The displacement parameters of three C-atoms in aniline ring were restrained using the DELU command with standard deviation of 0.003.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Part of crystal structure of (I) viewed down the b-axis. Hydrogen bonds N1–H1N···O1(i) give rise to infinite molecular chains running along the c axis. Symmetry code: (i) x,-y + 1,z - 1/2. H atoms not involved in hydrogen bonding are omitted and hydrogen bonds are shown as dashed lines.
2-Methyl-N-(4-methylphenyl)benzamide top
Crystal data top
C15H15NOF(000) = 960
Mr = 225.28Dx = 1.153 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6446 reflections
a = 40.6634 (12) Åθ = 3.0–29.2°
b = 7.1770 (2) ŵ = 0.07 mm1
c = 8.9418 (2) ÅT = 295 K
β = 96.173 (3)°Prism, colourless
V = 2594.45 (12) Å30.33 × 0.13 × 0.10 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
2486 independent reflections
Graphite monochromator1594 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.049
ω scans with κ offsetsθmax = 25.9°, θmin = 5.4°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 4949
Tmin = 0.985, Tmax = 0.994k = 88
25372 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.0615P]
where P = (Fo2 + 2Fc2)/3
2486 reflections(Δ/σ)max = 0.001
159 parametersΔρmax = 0.13 e Å3
4 restraintsΔρmin = 0.11 e Å3
Crystal data top
C15H15NOV = 2594.45 (12) Å3
Mr = 225.28Z = 8
Monoclinic, C2/cMo Kα radiation
a = 40.6634 (12) ŵ = 0.07 mm1
b = 7.1770 (2) ÅT = 295 K
c = 8.9418 (2) Å0.33 × 0.13 × 0.10 mm
β = 96.173 (3)°
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
2486 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1594 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.994Rint = 0.049
25372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0454 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.13 e Å3
2486 reflectionsΔρmin = 0.11 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.38556 (4)0.3947 (2)0.51508 (15)0.0490 (4)
C20.41020 (4)0.29352 (18)0.43275 (14)0.0460 (4)
C30.44366 (4)0.2966 (2)0.48505 (16)0.0556 (4)
C40.46488 (4)0.1922 (2)0.4075 (2)0.0683 (5)
H40.48740.1930.43970.082*
C50.45356 (5)0.0877 (2)0.2846 (2)0.0744 (5)
H50.46830.01680.2360.089*
C60.42084 (5)0.0867 (2)0.23294 (19)0.0712 (5)
H60.41320.01660.14880.085*
C70.39921 (4)0.1908 (2)0.30672 (15)0.0577 (4)
H70.37690.1920.27120.069*
C80.34387 (4)0.6436 (2)0.48652 (14)0.0508 (4)
C90.32161 (4)0.5851 (2)0.58239 (17)0.0654 (5)
H90.32190.46260.61630.078*
C100.29882 (4)0.7110 (3)0.6277 (2)0.0785 (5)
H100.28390.67060.69260.094*
C110.29747 (4)0.8930 (3)0.5804 (2)0.0752 (5)
C120.32004 (5)0.9467 (3)0.4855 (2)0.0799 (5)
H120.31991.06940.4520.096*
C130.34283 (4)0.8252 (3)0.43868 (18)0.0697 (5)
H130.35770.86640.37390.084*
C140.45688 (5)0.4126 (3)0.6189 (2)0.0896 (6)
H14A0.48060.41320.62730.134*
H14B0.44960.36060.70870.134*
H14C0.44880.5380.6060.134*
C150.27185 (5)1.0262 (4)0.6292 (3)0.1144 (9)
H15A0.25670.95940.68480.172*0.5
H15B0.25991.08210.5420.172*0.5
H15C0.28261.12170.69170.172*0.5
H15D0.27611.14940.59420.172*0.5
H15E0.27291.02670.7370.172*0.5
H15F0.25020.98710.58730.172*0.5
N10.36770 (3)0.52332 (18)0.43453 (13)0.0545 (4)
H1N0.3735 (4)0.552 (2)0.3467 (15)0.065*
O10.38239 (3)0.35884 (16)0.64635 (11)0.0718 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0637 (9)0.0501 (9)0.0351 (7)0.0025 (7)0.0132 (6)0.0003 (6)
C20.0611 (9)0.0411 (8)0.0374 (7)0.0016 (7)0.0133 (6)0.0030 (6)
C30.0646 (10)0.0491 (9)0.0537 (9)0.0001 (8)0.0091 (7)0.0005 (7)
C40.0587 (10)0.0634 (11)0.0843 (12)0.0030 (9)0.0147 (9)0.0005 (9)
C50.0779 (13)0.0625 (12)0.0871 (12)0.0077 (10)0.0293 (10)0.0164 (10)
C60.0846 (13)0.0660 (12)0.0653 (10)0.0002 (10)0.0184 (9)0.0243 (9)
C70.0645 (10)0.0597 (10)0.0500 (8)0.0019 (8)0.0107 (7)0.0079 (7)
C80.0518 (9)0.0636 (10)0.0376 (7)0.0047 (8)0.0082 (6)0.0023 (7)
C90.0613 (10)0.0722 (11)0.0655 (9)0.0040 (8)0.0205 (8)0.0039 (8)
C100.0576 (10)0.1063 (15)0.0759 (11)0.0022 (10)0.0265 (8)0.0135 (10)
C110.0625 (11)0.0948 (13)0.0667 (11)0.0212 (10)0.0003 (9)0.0204 (10)
C120.0887 (13)0.0752 (13)0.0761 (11)0.0250 (11)0.0104 (10)0.0027 (10)
C130.0773 (12)0.0708 (12)0.0641 (10)0.0136 (10)0.0214 (8)0.0106 (9)
C140.0823 (13)0.0965 (15)0.0864 (12)0.0020 (11)0.0075 (10)0.0278 (11)
C150.0884 (15)0.146 (2)0.1076 (15)0.0512 (15)0.0038 (12)0.0354 (15)
N10.0660 (8)0.0652 (9)0.0352 (6)0.0115 (7)0.0185 (6)0.0062 (6)
O10.1041 (9)0.0757 (8)0.0394 (6)0.0222 (7)0.0253 (5)0.0099 (5)
Geometric parameters (Å, º) top
C1—O11.2219 (15)C9—H90.93
C1—N11.3362 (18)C10—C111.372 (3)
C1—C21.4941 (19)C10—H100.93
C2—C71.380 (2)C11—C121.370 (3)
C2—C31.390 (2)C11—C151.513 (3)
C3—C41.384 (2)C12—C131.371 (2)
C3—C141.509 (2)C12—H120.93
C4—C51.369 (2)C13—H130.93
C4—H40.93C14—H14A0.96
C5—C61.361 (2)C14—H14B0.96
C5—H50.93C14—H14C0.96
C6—C71.375 (2)C15—H15A0.96
C6—H60.93C15—H15B0.96
C7—H70.93C15—H15C0.96
C8—C131.372 (2)C15—H15D0.96
C8—C91.377 (2)C15—H15E0.96
C8—N11.4132 (19)C15—H15F0.96
C9—C101.386 (2)N1—H1N0.868 (13)
O1—C1—N1123.78 (13)C13—C12—H12119
O1—C1—C2121.10 (13)C12—C13—C8120.57 (17)
N1—C1—C2115.12 (11)C12—C13—H13119.7
C7—C2—C3120.17 (13)C8—C13—H13119.7
C7—C2—C1119.10 (13)C3—C14—H14A109.5
C3—C2—C1120.69 (12)C3—C14—H14B109.5
C4—C3—C2117.58 (14)H14A—C14—H14B109.5
C4—C3—C14120.54 (15)C3—C14—H14C109.5
C2—C3—C14121.86 (14)H14A—C14—H14C109.5
C5—C4—C3121.66 (16)H14B—C14—H14C109.5
C5—C4—H4119.2C11—C15—H15A109.5
C3—C4—H4119.2C11—C15—H15B109.5
C6—C5—C4120.51 (15)H15A—C15—H15B109.5
C6—C5—H5119.7C11—C15—H15C109.5
C4—C5—H5119.7H15A—C15—H15C109.5
C5—C6—C7119.13 (15)H15B—C15—H15C109.5
C5—C6—H6120.4C11—C15—H15D109.5
C7—C6—H6120.4H15A—C15—H15D141.1
C6—C7—C2120.93 (15)H15B—C15—H15D56.3
C6—C7—H7119.5H15C—C15—H15D56.3
C2—C7—H7119.5C11—C15—H15E109.5
C13—C8—C9118.91 (15)H15A—C15—H15E56.3
C13—C8—N1118.50 (14)H15B—C15—H15E141.1
C9—C8—N1122.59 (15)H15C—C15—H15E56.3
C8—C9—C10119.25 (17)H15D—C15—H15E109.5
C8—C9—H9120.4C11—C15—H15F109.5
C10—C9—H9120.4H15A—C15—H15F56.3
C11—C10—C9122.42 (17)H15B—C15—H15F56.3
C11—C10—H10118.8H15C—C15—H15F141.1
C9—C10—H10118.8H15D—C15—H15F109.5
C12—C11—C10116.86 (16)H15E—C15—H15F109.5
C12—C11—C15121.9 (2)C1—N1—C8126.63 (12)
C10—C11—C15121.3 (2)C1—N1—H1N117.8 (11)
C11—C12—C13122.00 (18)C8—N1—H1N114.6 (11)
C11—C12—H12119
O1—C1—C2—C7118.96 (16)C13—C8—C9—C100.0 (2)
N1—C1—C2—C760.69 (18)N1—C8—C9—C10179.59 (14)
O1—C1—C2—C358.66 (19)C8—C9—C10—C110.1 (3)
N1—C1—C2—C3121.68 (15)C9—C10—C11—C120.4 (3)
C7—C2—C3—C40.8 (2)C9—C10—C11—C15178.70 (16)
C1—C2—C3—C4176.82 (14)C10—C11—C12—C130.4 (3)
C7—C2—C3—C14177.70 (15)C15—C11—C12—C13178.61 (17)
C1—C2—C3—C144.7 (2)C11—C12—C13—C80.3 (3)
C2—C3—C4—C50.7 (2)C9—C8—C13—C120.0 (2)
C14—C3—C4—C5179.15 (16)N1—C8—C13—C12179.69 (14)
C3—C4—C5—C61.4 (3)O1—C1—N1—C83.2 (2)
C4—C5—C6—C70.6 (3)C2—C1—N1—C8177.12 (14)
C5—C6—C7—C20.8 (2)C13—C8—N1—C1139.57 (16)
C3—C2—C7—C61.5 (2)C9—C8—N1—C140.8 (2)
C1—C2—C7—C6176.10 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.87 (1)1.97 (1)2.8361 (15)173 (2)
Symmetry code: (i) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC15H15NO
Mr225.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)40.6634 (12), 7.1770 (2), 8.9418 (2)
β (°) 96.173 (3)
V3)2594.45 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.33 × 0.13 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur System
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.985, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
25372, 2486, 1594
Rint0.049
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.121, 1.02
No. of reflections2486
No. of parameters159
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.11

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.868 (13)1.973 (13)2.8361 (15)172.9 (15)
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds (Interreg IIIA) for financial support in the purchase of the diffractometer.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J. & Sowmya, B. P. (2008c). Acta Cryst. E64, o83.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds