organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Thia­zol-2-yl)acetamide

aDepartment of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan, and bDepartment of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong
*Correspondence e-mail: uzma_yunus@yahoo.com

(Received 1 July 2008; accepted 10 July 2008; online 16 July 2008)

The title compound, C5H6N2OS, was synthesized from acetyl chloride and 2-amino­thia­zole in dry acetone. The asymmetric unit contains two mol­ecules. The crystal structure is stabilized by N—H⋯N and C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Raman et al. (2000[Raman, R., Razavi, H. & Kelly, J. W. (2000). Org. Lett. 2, 3289-3292.]); Wang et al. (2008[Wang, X.-J., Yang, Q., Liu, F. & You, Q.-D. (2008). Synth. Commun. 38, 1028-1035.]); Yunus et al. (2007[Yunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Helliwell, M. (2007). Acta Cryst. E63, o3690.] 2008[Yunus, U., Tahir, M. K., Bhatti, M. H. & Wong, W.-Y. (2008). Acta Cryst. E64, o722.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6N2OS

  • Mr = 142.18

  • Monoclinic, P 21 /c

  • a = 16.0650 (12) Å

  • b = 11.3337 (8) Å

  • c = 7.0670 (5) Å

  • β = 101.908 (10)°

  • V = 1259.04 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 173 (2) K

  • 0.30 × 0.26 × 0.22 mm

Data collection
  • Bruker SMART1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.830, Tmax = 1.000 (expected range = 0.757–0.911)

  • 7429 measured reflections

  • 3024 independent reflections

  • 2602 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.104

  • S = 1.05

  • 3024 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N3i 0.88 2.04 2.897 (2) 163
N4—H4A⋯N1ii 0.88 2.07 2.938 (2) 171
C2—H2A⋯O2iii 0.95 2.41 3.350 (2) 171
C7—H7A⋯O1iv 0.95 2.46 3.382 (2) 165
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The thiazole ring and its derivatives are of great importance in biological systems due to their vast range of biological activities such as anti-inflammatory, analgesic and antipyretic (Raman et al., 2000). On the other hand amide compounds have extensive applications in the pharmaceutical industry (Wang et al., 2008). As a part of our research the title compound (I) has been synthesized and its crystal structure is reported herein (Yunus et al., 2007; 2008).

The title compound (I) crystallizes in a monoclinic space group with two molecules in asymmetric unit. All the bond lengths and angles are within the normal ranges. The molecules are stabilized by intermolecular hydrogen bonds N—H···N, and C—H···O (Table 1, Fig 2).

Related literature top

For related literature, see: Raman et al. (2000); Wang et al. (2008); Yunus et al. (2007 2008).

Experimental top

A mixture of acetyl chloride (26 mmol) and 2-aminothiazole (26 mmol) was refluxed in dry acetone (60 ml) for two hours. After cooling, the mixture was poured into acidified cold water. The resulting yellow solid was filtered and washed with cold acetone. Single crystals of the title compound suitable for single-crystal x-ray analysis were obtained by recrystallization of the yellow solid from ethyl acetate.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I) showing N—H···N hydrogen bonding.
N-(Thiazol-2-yl)acetamide top
Crystal data top
C5H6N2OSF(000) = 592
Mr = 142.18Dx = 1.500 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7429 reflections
a = 16.0650 (12) Åθ = 2.6–28.3°
b = 11.3337 (8) ŵ = 0.42 mm1
c = 7.0670 (5) ÅT = 173 K
β = 101.908 (10)°Block, pale yellow
V = 1259.04 (16) Å30.30 × 0.26 × 0.22 mm
Z = 8
Data collection top
Bruker SMART1000 CCD
diffractometer
3024 independent reflections
Radiation source: fine-focus sealed tube2602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2118
Tmin = 0.830, Tmax = 1.000k = 1512
7429 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.5928P]
where P = (Fo2 + 2Fc2)/3
3024 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C5H6N2OSV = 1259.04 (16) Å3
Mr = 142.18Z = 8
Monoclinic, P21/cMo Kα radiation
a = 16.0650 (12) ŵ = 0.42 mm1
b = 11.3337 (8) ÅT = 173 K
c = 7.0670 (5) Å0.30 × 0.26 × 0.22 mm
β = 101.908 (10)°
Data collection top
Bruker SMART1000 CCD
diffractometer
3024 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2602 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 1.000Rint = 0.024
7429 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.05Δρmax = 0.44 e Å3
3024 reflectionsΔρmin = 0.34 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22544 (11)0.26865 (16)0.3481 (3)0.0287 (4)
H1A0.20730.19650.28430.034*
C20.17369 (11)0.35988 (15)0.3648 (3)0.0276 (4)
H2A0.11430.35750.31270.033*
C30.29472 (10)0.43764 (14)0.5196 (2)0.0223 (3)
C40.43344 (10)0.50546 (16)0.6861 (3)0.0281 (4)
C50.48077 (11)0.61150 (18)0.7800 (3)0.0362 (4)
H5A0.54070.59100.82720.054*
H5B0.45600.63720.88870.054*
H5C0.47650.67550.68520.054*
C60.28449 (12)0.53644 (16)1.0659 (3)0.0313 (4)
H6A0.30850.45981.08670.038*
C70.32581 (11)0.63693 (16)1.1264 (3)0.0290 (4)
H7A0.38310.63741.19600.035*
C80.20282 (10)0.71411 (14)0.9848 (2)0.0227 (3)
C90.06151 (10)0.78011 (16)0.8300 (3)0.0277 (4)
C100.00676 (12)0.88668 (17)0.7755 (3)0.0381 (4)
H10A0.05060.86180.71160.057*
H10B0.03120.93610.68720.057*
H10C0.00380.93180.89220.057*
N10.21293 (9)0.45737 (13)0.4630 (2)0.0254 (3)
N20.34869 (8)0.52329 (13)0.6143 (2)0.0252 (3)
H2B0.32730.59340.62930.030*
N30.27956 (8)0.73976 (13)1.0806 (2)0.0255 (3)
N40.14391 (8)0.80175 (12)0.9218 (2)0.0246 (3)
H4A0.16020.87560.94180.030*
O10.46679 (8)0.40975 (12)0.6735 (2)0.0386 (3)
O20.03563 (8)0.67920 (12)0.7966 (2)0.0380 (3)
S10.32900 (3)0.30062 (4)0.45821 (7)0.02647 (13)
S20.18167 (3)0.56560 (4)0.94536 (7)0.02913 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0280 (8)0.0239 (8)0.0334 (9)0.0035 (6)0.0047 (7)0.0030 (7)
C20.0213 (8)0.0266 (8)0.0329 (9)0.0019 (6)0.0008 (6)0.0002 (7)
C30.0200 (7)0.0211 (7)0.0250 (8)0.0019 (6)0.0030 (6)0.0021 (6)
C40.0200 (8)0.0303 (9)0.0322 (9)0.0014 (6)0.0016 (7)0.0026 (7)
C50.0232 (8)0.0368 (10)0.0448 (11)0.0038 (7)0.0015 (7)0.0044 (8)
C60.0300 (9)0.0250 (8)0.0376 (10)0.0057 (7)0.0038 (7)0.0037 (7)
C70.0237 (8)0.0296 (9)0.0321 (9)0.0033 (7)0.0024 (7)0.0052 (7)
C80.0217 (7)0.0215 (7)0.0247 (8)0.0020 (6)0.0044 (6)0.0014 (6)
C90.0184 (7)0.0280 (9)0.0352 (9)0.0010 (6)0.0021 (6)0.0005 (7)
C100.0240 (8)0.0327 (10)0.0540 (12)0.0040 (7)0.0004 (8)0.0011 (9)
N10.0185 (6)0.0249 (7)0.0314 (8)0.0000 (5)0.0016 (5)0.0005 (6)
N20.0184 (6)0.0222 (7)0.0329 (8)0.0005 (5)0.0005 (5)0.0019 (6)
N30.0200 (6)0.0242 (7)0.0305 (8)0.0007 (5)0.0009 (5)0.0032 (6)
N40.0182 (6)0.0195 (7)0.0342 (8)0.0011 (5)0.0008 (5)0.0003 (5)
O10.0232 (6)0.0317 (7)0.0557 (9)0.0058 (5)0.0039 (6)0.0007 (6)
O20.0220 (6)0.0276 (7)0.0590 (9)0.0047 (5)0.0042 (6)0.0023 (6)
S10.0229 (2)0.0210 (2)0.0349 (2)0.00316 (14)0.00479 (16)0.00010 (15)
S20.0261 (2)0.0205 (2)0.0385 (3)0.00185 (15)0.00132 (17)0.00081 (16)
Geometric parameters (Å, º) top
C1—C21.347 (2)C6—S21.7271 (19)
C1—S11.7236 (18)C6—H6A0.9500
C1—H1A0.9500C7—N31.384 (2)
C2—N11.385 (2)C7—H7A0.9500
C2—H2A0.9500C8—N31.311 (2)
C3—N11.311 (2)C8—N41.381 (2)
C3—N21.379 (2)C8—S21.7284 (17)
C3—S11.7326 (16)C9—O21.223 (2)
C4—O11.221 (2)C9—N41.371 (2)
C4—N21.366 (2)C9—C101.497 (2)
C4—C51.502 (3)C10—H10A0.9800
C5—H5A0.9800C10—H10B0.9800
C5—H5B0.9800C10—H10C0.9800
C5—H5C0.9800N2—H2B0.8800
C6—C71.343 (3)N4—H4A0.8800
C2—C1—S1110.78 (13)N3—C7—H7A122.2
C2—C1—H1A124.6N3—C8—N4121.06 (15)
S1—C1—H1A124.6N3—C8—S2115.59 (12)
C1—C2—N1115.51 (15)N4—C8—S2123.35 (12)
C1—C2—H2A122.2O2—C9—N4121.01 (16)
N1—C2—H2A122.2O2—C9—C10123.13 (16)
N1—C3—N2121.20 (15)N4—C9—C10115.86 (15)
N1—C3—S1115.26 (12)C9—C10—H10A109.5
N2—C3—S1123.49 (12)C9—C10—H10B109.5
O1—C4—N2121.52 (16)H10A—C10—H10B109.5
O1—C4—C5123.60 (15)C9—C10—H10C109.5
N2—C4—C5114.88 (15)H10A—C10—H10C109.5
C4—C5—H5A109.5H10B—C10—H10C109.5
C4—C5—H5B109.5C3—N1—C2109.91 (14)
H5A—C5—H5B109.5C4—N2—C3123.68 (15)
C4—C5—H5C109.5C4—N2—H2B118.2
H5A—C5—H5C109.5C3—N2—H2B118.2
H5B—C5—H5C109.5C8—N3—C7109.65 (15)
C7—C6—S2110.75 (13)C9—N4—C8123.68 (14)
C7—C6—H6A124.6C9—N4—H4A118.2
S2—C6—H6A124.6C8—N4—H4A118.2
C6—C7—N3115.69 (15)C1—S1—C388.54 (8)
C6—C7—H7A122.2C6—S2—C888.31 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N3i0.882.042.897 (2)163
N4—H4A···N1ii0.882.072.938 (2)171
C2—H2A···O2iii0.952.413.350 (2)171
C7—H7A···O1iv0.952.463.382 (2)165
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z+1; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC5H6N2OS
Mr142.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)16.0650 (12), 11.3337 (8), 7.0670 (5)
β (°) 101.908 (10)
V3)1259.04 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.30 × 0.26 × 0.22
Data collection
DiffractometerBruker SMART1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.830, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7429, 3024, 2602
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.104, 1.05
No. of reflections3024
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.34

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N3i0.882.042.897 (2)163
N4—H4A···N1ii0.882.072.938 (2)171
C2—H2A···O2iii0.952.413.350 (2)171
C7—H7A···O1iv0.952.463.382 (2)165
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+3/2, z+1/2; (iii) x, y+1, z+1; (iv) x+1, y+1, z+2.
 

Acknowledgements

The authors gratefully acknowledge Allama Iqbal Open University, Islamabad, Pakistan, for providing research facilities.

References

First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRaman, R., Razavi, H. & Kelly, J. W. (2000). Org. Lett. 2, 3289–3292.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-J., Yang, Q., Liu, F. & You, Q.-D. (2008). Synth. Commun. 38, 1028–1035.  Web of Science CrossRef CAS Google Scholar
First citationYunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Helliwell, M. (2007). Acta Cryst. E63, o3690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYunus, U., Tahir, M. K., Bhatti, M. H. & Wong, W.-Y. (2008). Acta Cryst. E64, o722.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds