organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E,E)-N,N′-Bis­(4-meth­oxy­benzyl­­idene)cyclo­hexane-1,2-di­amine

aDepartment of Chemical Engineering, Anyang Institute of Technology, Anyang, 455000, People's Republic of China
*Correspondence e-mail: aywgx@yahoo.com.cn

(Received 24 July 2008; accepted 27 July 2008; online 31 July 2008)

In the title compound, C22H26N2O2, the meth­oxy and the benzyl­idene groups are essentially coplanar, and the cyclo­hexane ring has a chair conformation. The two halves of the mol­ecule are related by a twofold rotation. The crystal structure is stabilized only by van der Waals inter­actions.

Related literature

For the chemistry of Schiff base derivatives, see: Negm & Zaki (2008[Negm, N.-A. & Zaki, M.-F. (2008). Colloid Surf. B, 64, 179-183.]); Feng et al. (2008[Feng, Y., Wang, C., Xu, J., Xu, L., Liao, D., Yan, S. & Jiang, Z. (2008). Inorg. Chem. Commun. 11, 549-552.]); Lee & Do (2007[Lee, J., Kim, Y. & Do, Y. (2007). Inorg. Chem. 46, 7701-7703.]).

[Scheme 1]

Experimental

Crystal data
  • C22H26N2O2

  • Mr = 350.45

  • Orthorhombic, P c c n

  • a = 19.674 (3) Å

  • b = 5.4097 (9) Å

  • c = 18.662 (3) Å

  • V = 1986.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 (2) K

  • 0.35 × 0.30 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.978, Tmax = 0.985

  • 18603 measured reflections

  • 2262 independent reflections

  • 1588 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.154

  • S = 1.12

  • 2262 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL .

Supporting information


Comment top

In the past five years, we have focused on the chemistry of schiff-base derivatives because of their biological behaviors and their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Negm & Zaki, 2008; Feng et al. 2008; Lee & Do, 2007). We report here the crystal structure of the title compound, (N1E,N2E)-N1,N2-bis(4-methoxybenzylidene)cyclohexane-1,2-diamine.

In the title compound (Fig.1), there is a rotation axis bisecting the molecule through the cyclohexane ring. The methoxy and the benzylidene groups are essentially coplanar, and the cyclohexane-1,2-diamine group is in the chair form. The C4=N1 bond length of 1.249 (2) Å is consistent with the value for a double bond. The crystal structure is stabilized only by van der Waals interactions.

Related literature top

For the chemistry of schiff-base derivatives, see: Negm & Zaki (2008); Feng et al. (2008); Lee & Do (2007).

Experimental top

rac-Diaminocyclohexane (1.20 g, 10.5 mmol) and p-anisaldehyde (1.36 g, 10.0 mmol) were dissolved in ethanol (20 mL) under magnetic stirring. The mixture was heated to reflux for 12 h. After cooled to room temperature, the resulting content was put to a refrigerator to stand over night. Then, the precipitate was filtered off and recrystallized from ethanol affording colorless block crystals of this compound suitable for X-ray analysis were obtained.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C–H = 0.93 Å(aromatic), C–H = 0.98 Å(methine), 0.97 Å(methylene), C–H = 0.96 Å(methyl), with Uiso(H) =1.2Ueq(C except methyl C) and Uiso(H) =1.5Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom numbering scheme, symmetry related atoms, (-x+1/2, -y+1/2, z) denoted by A. Displacement ellipsoids were drawn at the 30% probability level.
(E,E)-N,N'-Bis(4- methoxybenzylidene)cyclohexane-1,2-diamine top
Crystal data top
C22H26N2O2F(000) = 752
Mr = 350.45Dx = 1.172 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 3131 reflections
a = 19.674 (3) Åθ = 3.0–27.4°
b = 5.4097 (9) ŵ = 0.08 mm1
c = 18.662 (3) ÅT = 298 K
V = 1986.2 (6) Å3Block, colorless
Z = 40.35 × 0.30 × 0.20 mm
Data collection top
Rigaku Mercury2
diffractometer
2262 independent reflections
Radiation source: fine-focus sealed tube1588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 2525
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 77
Tmin = 0.978, Tmax = 0.985l = 2424
18603 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.4317P]
where P = (Fo2 + 2Fc2)/3
2262 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C22H26N2O2V = 1986.2 (6) Å3
Mr = 350.45Z = 4
Orthorhombic, PccnMo Kα radiation
a = 19.674 (3) ŵ = 0.08 mm1
b = 5.4097 (9) ÅT = 298 K
c = 18.662 (3) Å0.35 × 0.30 × 0.20 mm
Data collection top
Rigaku Mercury2
diffractometer
2262 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1588 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.985Rint = 0.060
18603 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.12Δρmax = 0.13 e Å3
2262 reflectionsΔρmin = 0.14 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47992 (8)0.4625 (3)0.41000 (8)0.0713 (5)
N10.32205 (8)0.3062 (3)0.11039 (9)0.0558 (5)
C50.36446 (9)0.4561 (4)0.22382 (10)0.0493 (5)
C20.32123 (10)0.3262 (5)0.02019 (11)0.0629 (6)
H2A0.34540.16990.02040.075*
H2B0.35470.45770.02030.075*
C70.45135 (10)0.2643 (4)0.29659 (11)0.0535 (5)
H70.48270.13800.30340.064*
C40.32303 (10)0.4677 (4)0.15823 (10)0.0553 (5)
H40.29550.60570.15190.066*
C80.44380 (10)0.4485 (4)0.34762 (10)0.0513 (5)
C60.41180 (10)0.2704 (4)0.23553 (10)0.0539 (5)
H60.41700.14670.20140.065*
C30.27888 (9)0.3439 (4)0.04791 (10)0.0532 (5)
H30.25920.51010.05060.064*
C100.35804 (10)0.6392 (4)0.27558 (11)0.0591 (5)
H100.32700.76660.26880.071*
C10.27826 (11)0.3452 (4)0.08769 (11)0.0636 (6)
H1B0.25870.50950.09080.076*
H1A0.30690.32040.12940.076*
C110.52945 (14)0.2748 (6)0.42442 (13)0.0871 (8)
H11A0.55090.30760.46960.131*
H11B0.56310.27460.38720.131*
H11C0.50750.11640.42620.131*
C90.39688 (10)0.6346 (4)0.33659 (11)0.0595 (6)
H90.39160.75800.37080.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0718 (9)0.0912 (12)0.0509 (9)0.0097 (9)0.0096 (7)0.0121 (8)
N10.0534 (9)0.0608 (11)0.0532 (10)0.0022 (8)0.0042 (8)0.0036 (8)
C50.0448 (9)0.0533 (11)0.0497 (11)0.0015 (9)0.0020 (8)0.0005 (9)
C20.0514 (11)0.0790 (16)0.0583 (13)0.0074 (10)0.0038 (10)0.0038 (11)
C70.0538 (11)0.0521 (12)0.0544 (11)0.0079 (9)0.0001 (10)0.0009 (9)
C40.0490 (11)0.0572 (12)0.0597 (13)0.0051 (9)0.0020 (9)0.0010 (10)
C80.0510 (10)0.0593 (12)0.0436 (10)0.0043 (9)0.0035 (9)0.0025 (9)
C60.0574 (11)0.0524 (12)0.0518 (11)0.0006 (9)0.0032 (10)0.0101 (9)
C30.0528 (11)0.0543 (12)0.0524 (11)0.0028 (9)0.0044 (9)0.0016 (9)
C100.0572 (12)0.0541 (12)0.0661 (13)0.0088 (10)0.0001 (10)0.0060 (10)
C10.0680 (13)0.0694 (14)0.0535 (12)0.0003 (11)0.0036 (10)0.0037 (10)
C110.0886 (17)0.110 (2)0.0625 (15)0.0236 (16)0.0193 (13)0.0001 (14)
C90.0628 (12)0.0580 (13)0.0578 (13)0.0034 (10)0.0017 (10)0.0148 (10)
Geometric parameters (Å, º) top
O1—C81.366 (2)C4—H40.9300
O1—C111.433 (3)C8—C91.381 (3)
N1—C41.249 (2)C6—H60.9300
N1—C31.457 (2)C3—C3i1.525 (4)
C5—C101.389 (3)C3—H30.9800
C5—C61.387 (3)C10—C91.371 (3)
C5—C41.472 (3)C10—H100.9300
C2—C31.523 (3)C1—C1i1.516 (4)
C2—C11.521 (3)C1—H1B0.9700
C2—H2A0.9700C1—H1A0.9700
C2—H2B0.9700C11—H11A0.9600
C7—C61.380 (3)C11—H11B0.9600
C7—C81.386 (3)C11—H11C0.9600
C7—H70.9300C9—H90.9300
C8—O1—C11118.35 (17)N1—C3—C2109.88 (15)
C4—N1—C3118.88 (17)C3i—C3—C2111.46 (14)
C10—C5—C6117.90 (18)N1—C3—H3108.5
C10—C5—C4119.83 (18)C3i—C3—H3108.5
C6—C5—C4122.25 (18)C2—C3—H3108.5
C3—C2—C1112.52 (16)C9—C10—C5120.92 (19)
C3—C2—H2A109.1C9—C10—H10119.5
C1—C2—H2A109.1C5—C10—H10119.5
C3—C2—H2B109.1C1i—C1—C2111.22 (15)
C1—C2—H2B109.1C1i—C1—H1B109.4
H2A—C2—H2B107.8C2—C1—H1B109.4
C6—C7—C8119.32 (19)C1i—C1—H1A109.4
C6—C7—H7120.3C2—C1—H1A109.4
C8—C7—H7120.3H1B—C1—H1A108.0
N1—C4—C5124.96 (19)O1—C11—H11A109.5
N1—C4—H4117.5O1—C11—H11B109.5
C5—C4—H4117.5H11A—C11—H11B109.5
O1—C8—C9115.75 (17)O1—C11—H11C109.5
O1—C8—C7124.70 (18)H11A—C11—H11C109.5
C9—C8—C7119.55 (18)H11B—C11—H11C109.5
C7—C6—C5121.71 (18)C8—C9—C10120.61 (19)
C7—C6—H6119.1C8—C9—H9119.7
C5—C6—H6119.1C10—C9—H9119.7
N1—C3—C3i109.94 (14)
C3—N1—C4—C5179.41 (17)C4—N1—C3—C3i112.3 (2)
C10—C5—C4—N1175.8 (2)C4—N1—C3—C2124.6 (2)
C6—C5—C4—N16.0 (3)C1—C2—C3—N1175.80 (18)
C11—O1—C8—C9179.9 (2)C1—C2—C3—C3i53.7 (3)
C11—O1—C8—C70.1 (3)C6—C5—C10—C90.6 (3)
C6—C7—C8—O1179.97 (18)C4—C5—C10—C9178.92 (19)
C6—C7—C8—C90.0 (3)C3—C2—C1—C1i54.7 (3)
C8—C7—C6—C50.1 (3)O1—C8—C9—C10179.73 (18)
C10—C5—C6—C70.4 (3)C7—C8—C9—C100.3 (3)
C4—C5—C6—C7178.64 (18)C5—C10—C9—C80.6 (3)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC22H26N2O2
Mr350.45
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)298
a, b, c (Å)19.674 (3), 5.4097 (9), 18.662 (3)
V3)1986.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.30 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.978, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
18603, 2262, 1588
Rint0.060
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.154, 1.12
No. of reflections2262
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.14

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationFeng, Y., Wang, C., Xu, J., Xu, L., Liao, D., Yan, S. & Jiang, Z. (2008). Inorg. Chem. Commun. 11, 549–552.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, J., Kim, Y. & Do, Y. (2007). Inorg. Chem. 46, 7701–7703.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNegm, N.-A. & Zaki, M.-F. (2008). Colloid Surf. B, 64, 179–183.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds